#include <iostream>
#include <math.h>
using namespace std;
#define LL long long
LL gcd(LL a, LL b)
{
return b ? gcd(b, a % b) : a;
}
LL polya(LL n)
{
LL ret = 0;
for(LL i = 0; i < n; i++)
ret += pow(3, gcd(i, n));
//flip them...
if( n & 1 )//odd
ret += n * pow(3, n / 2 + 1);//symmetric axis's num is n, and a cycle of (n + 1) / 2, with the length of 2, and 2 cycles with length of 1... else//even ret += n / 2 * pow(3, n / 2) + (n / 2) * pow(3, n / 2 + 1);//symmetric axis's num is n, categoried by the beeds, for n/2 axis which through the beed, they formed (n/2-1) cycles with the length of 2, and 2 cycles with the length of 1; for the n/2 axis which not through the beed, they formed (n/2) cycles with the length of 2.
else//even
ret += n / 2 * pow(3, n / 2) + (n / 2) * pow(3, n / 2 + 1);//
return ret / n / 2;//the average of them(according to Polya Theorem.)
}
int main()
{
LL n;
while(cin>> n && n != -1)
{
if (n <= 0) cout << 0 << endl;
else cout << polya(n) << endl;
}
return 0;
}
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
using namespace std;
#define n 3
__int64 m;
int gcd(int a, int b)
{
b = b % a;
while (b)
{
a = a % b;
swap(a, b);
}
return a;
}
int main()
{
while (scanf("%lld", &m)!=EOF)
{
if(m==-1)
break;
__int64 ans = 0;
for (int i = 1; i <= m; i++)
ans += pow(n*1.0, gcd(i, m)*1.0);
if (m & 1)
ans += m * pow(n*1.0, (m / 2 + 1)*1.0);
else
ans += m / 2 * pow(n*1.0, (m / 2)*1.0) + m / 2 * pow(n*1.0, (m / 2 + 1)*1.0);
ans /= m * 2;
printf("%I64d\n", ans);
}
return 0;
}