Numpy系列(四)- 索引和切片
Python 中原生的数组就支持使用方括号([])进行索引和切片操作,Numpy 自然不会放过这个强大的特性。
单个元素索引
1-D数组的单元素索引是人们期望的。它的工作原理与其他标准Python序列一样。它是从0开始的,并且接受负索引来从数组的结尾进行索引。
import numpy as np a = np.arange(10) a Out[130]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) a[3] Out[131]: 3 a[-2] Out[132]: 8
与Python原生的列表、元组不同的是,Numpy数组支持多维数组的多维索引。
a.shape
Out[133]: (10,)
a.resize(2, 5)
a
Out[135]:
array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]])
a[0, 1]
Out[136]: 1
a[1, 2]
Out[137]: 7
a[1]
Out[138]: array([5, 6, 7, 8, 9])
a[1][2]
Out[139]: 7
x[1,-1] 的结果等于 x[1][-1],但是第二种情况效率更低,因为第二种方式创建了一个临时数组。
切片支持
可以使用切片和步长来截取不同长度的数组,使用方式与Python原生的对列表和元组的方式相同。
x = np.arange(10)
x[2:5]
Out[140]: array([2, 3, 4])
x[2:5]
Out[141]: array([2, 3, 4])
x[:-2]
Out[142]: array([0, 1, 2, 3, 4, 5, 6, 7])
x[1:7:2]
Out[143]: array([1, 3, 5])
y = np.arange(35).reshape(5,7)
y
Out[144]:
array([[ 0, 1, 2, 3, 4, 5, 6],
[ 7, 8, 9, 10, 11, 12, 13],
[14, 15, 16, 17, 18, 19, 20],
[21, 22, 23, 24, 25, 26, 27],
[28, 29, 30, 31, 32, 33, 34]])
y[1:5:2,:3]
Out[145]:
array([[ 7, 8, 9],
[21, 22, 23]])
y[1:5:2,::3]
Out[146]:
array([[ 7, 10, 13],
[21, 24, 27]])
注意:使用切片不会复制内部数组数据,但也会生成原始数据的新视图。
索引数组
Numpy数组可以被其他数组索引。对于索引数组的所有情况,返回的是原始数据的副本,而不是一个获取切片的视图。
索引数组必须是整数类型。
x = np.arange(10,1,-1) x Out[147]: array([10, 9, 8, 7, 6, 5, 4, 3, 2]) x[np.array([1,3,4,])] Out[148]: array([9, 7, 6])
使用索引数组来对被索引数组进行索引后,会生成一个与索引数组形状相同的新数组,只是这个新数组的值会用被索引数组中对应索引的值替代。
x[np.array([3, 3, 1, 8])]
布尔索引数组
使用(整数)索引列表时,需要提供要选择的索引列表,最后生成的结果形状与索引数组形状相同;但是在使用布尔索引时,布尔数组必须与要编制索引的数组的初始维度具有相同的形状。在最直接的情况下,布尔数组具有相同的形状:
y
Out[149]:
array([[ 0, 1, 2, 3, 4, 5, 6],
[ 7, 8, 9, 10, 11, 12, 13],
[14, 15, 16, 17, 18, 19, 20],
[21, 22, 23, 24, 25, 26, 27],
[28, 29, 30, 31, 32, 33, 34]])
b = y>20
b
Out[150]:
array([[False, False, False, False, False, False, False],
[False, False, False, False, False, False, False],
[False, False, False, False, False, False, False],
[ True, True, True, True, True, True, True],
[ True, True, True, True, True, True, True]])
y[b]
Out[151]: array([21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34])
y[y>20]
Out[152]: array([21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34])
与整数索引数组的情况不同,在布尔数组中,结果是1-D数组,其包含索引数组中的所有元素,对应于布尔数组中的所有真实元素。索引数组中的元素始终以行优先(C样式)顺序进行迭代和返回。结果也与y[np.nonzero(b)]相同。与索引数组一样,返回的是数据的副本,而不是一个获取切片的视图。
如果y比b的维数更高,则结果将是多维的。例如:
b[:,5]
Out[153]: array([False, False, False, True, True])
y[b[:,5]]
Out[154]:
array([[21, 22, 23, 24, 25, 26, 27],
[28, 29, 30, 31, 32, 33, 34]])
结构化索引工具
为了便于数组形状与表达式和赋值关系的匹配,可以在数组索引中使用np.newaxis对象来添加大小为1的新维。例如
y.shape Out[155]: (5, 7) y[:,np.newaxis,:].shape Out[157]: (5, 1, 7)
注意,在数组中没有新的元素,只是维度增加。这可以方便地以一种方式组合两个数组,否则将需要明确重塑操作。例如:
x = np.arange(5)
x
Out[158]: array([0, 1, 2, 3, 4])
x[:,np.newaxis] + x[np.newaxis,:]
Out[159]:
array([[0, 1, 2, 3, 4],
[1, 2, 3, 4, 5],
[2, 3, 4, 5, 6],
[3, 4, 5, 6, 7],
[4, 5, 6, 7, 8]])
省略语法(三个点)可以用于指示完全选择任何剩余的未指定维度。如果数组z的形状是(3,3,3,3),那么z[1,...,2]等效于z[1,:,:,2]。例如:
z = np.arange(81).reshape(3,3,3,3)
z
Out[160]:
array([[[[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8]],
[[ 9, 10, 11],
[12, 13, 14],
[15, 16, 17]],
[[18, 19, 20],
[21, 22, 23],
[24, 25, 26]]],
[[[27, 28, 29],
[30, 31, 32],
[33, 34, 35]],
[[36, 37, 38],
[39, 40, 41],
[42, 43, 44]],
[[45, 46, 47],
[48, 49, 50],
[51, 52, 53]]],
[[[54, 55, 56],
[57, 58, 59],
[60, 61, 62]],
[[63, 64, 65],
[66, 67, 68],
[69, 70, 71]],
[[72, 73, 74],
[75, 76, 77],
[78, 79, 80]]]])
z[1,...,2]
Out[161]:
array([[29, 32, 35],
[38, 41, 44],
[47, 50, 53]])
z[1,:,:,2]
Out[162]:
array([[29, 32, 35],
[38, 41, 44],
[47, 50, 53]])
给被索引的数组赋值
可以使用单个索引,切片,索引和布尔数组来选择数组的子集来分配。分配给索引数组的值必须是形状一致的(相同的形状或可广播到索引产生的形状)。例如,允许为切片分配常量:
x = np.arange(10) x[2:7] Out[163]: array([2, 3, 4, 5, 6]) x[2:7] = np.arange(5) x Out[164]: array([0, 1, 0, 1, 2, 3, 4, 7, 8, 9])

浙公网安备 33010602011771号