随笔分类 - 数论—莫比乌斯反演
摘要:题意:求$\sum_{i=1}^{n}\sum_{j=1}^{n}lcm(i,j)^{gcd(i,j)}$ 神仙题... 首先可能会想到一个转化,就是$lcm(i,j)=\frac{ij}{gcd(i,j)}$ 然后大力往下推式子,发现你推不下去了... 因为$d$在分母上!!! 然后我们考虑换一种
阅读全文
摘要:题意:求$\sum_{i=1}^{n}\sum_{j=1}^{n}d(ij)$ 首先推一发式子: $\sum_{i=1}^{n}\sum_{j=1}^{n}d(ij)$ 有一个结论:$d(nm)=\sum_{i|n}\sum_{j|m}[gcd(i,j)\equiv 1]$ 然后代入,得: $\su
阅读全文
摘要:莫比乌斯反演 还是推式子: 设$f(n)=n^{k}$ 那就是上一道题了 推的过程如下: $\sum_{i=1}^{a}\sum_{j=1}^{b}f(gcd(i,j))$ $\sum_{i=1}^{a}\sum_{j=1}^{b}\sum_{d=1}^{min(a,b)}[gcd(i,j)\equ
阅读全文
摘要:奇怪的莫比乌斯反演... 题意:定义$f(n)$表示将$n$质因数分解后质因子的最高幂次,求$\sum_{i=1}^{a}\sum_{j=1}^{b}f(gcd(i,j))$ 首先肯定是反演嘛... 推一发式子: $\sum_{i=1}^{a}\sum_{j=1}^{b}f(gcd(i,j))$ $
阅读全文
摘要:好毒瘤的一道题啊... 对每个$a_{i}\in S$,设$F(x)$为用$j$个$a_{i}$构造出$ja_{i}$的生成函数,那么$F(x)=\sum_{j=1}^{∞}x^{ja_{i}}$ 根据这篇博客里的内容,可以求得:$F(x)=\frac{1}{1-x^{a_{i}}}$ 设$t_{i
阅读全文
摘要:这题是莫比乌斯反演的典型题也是很有趣的题。 题意:求,其中f为为斐波那契数列 那么首先观察一下指数,发现是我们熟悉的形式,可以转化成这样的形式: 令T=kd,且假设n<m,有: 令 则原式= 这样的话我们的步骤就是这样的: 线性筛出莫比乌斯函数,同时递推求出f 然后利用f和莫比乌斯函数求出g(枚举倍
阅读全文
摘要:非常好的一道莫比乌斯反演题,对提升自己的能力有很大帮助。 首先我们分析一下题意:题意让我们求,其中 那么我们首先对后面的式子进行一下变形,变形过程详见https://blog.csdn.net/lleozhang/article/details/89093689 于是最后变成了这个样子: 但是这个式
阅读全文
摘要:一道莫比乌斯反演入门题。 首先观察题目要求:的数对数 首先可以发现,这个东西同时有上界和下界,所以并不是很容易计算 那么我们变下形,可以看到:原式= 是不是清晰很多了?(当然没有!) 不,这一步很重要的目的在于消去了下界,使得我们的计算更方便了。 而且可以发现这四个式子的形式是一样的,所以我们对一个
阅读全文
摘要:基本就是推式子,见博客https://blog.csdn.net/lleozhang/article/details/83416791
阅读全文