河内塔问题
题目描述 Description
一位法国数学家曾编写过一个印度的古老传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针。印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔。不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针上,小片必须在大片上面。僧侣们预言,当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭,而梵塔、庙宇和众生也都将同归于尽。
河内塔(又称汉诺塔)问题,就是在一块木板上有三个立柱,在柱1上放着若干个圆盘,小的在上面,大的在下面(初始状态)。请将在柱1上的三个圆盘移到柱3上面(目标状态)。 移动规则是: (1) 每次只能移动一个圆盘; (2) 大圆盘不能放到小圆盘的上面。 请你计算至少需要移动多少次才能将柱1上的n个圆从小到大的圆盘移动到柱3上。
输入描述 Input Description
n
输出描述 Output Description
将柱1上的n个圆从小到大的圆盘移动到柱3上的最少移动次数
样例输入 Sample Input
3
样例输出 Sample Output
7
1 #include<bits/stdc++.h> 2 using namespace std; 3 4 int h(int m) 5 { 6 int s; 7 if(m==1) 8 s=1; 9 else 10 s=2*h(m-1)+1; 11 return s; 12 } 13 int main() 14 { 15 int n; 16 cin>>n; 17 cout<<h(n); 18 }
 
                     
                    
                 
                    
                
 
                
            
         
         浙公网安备 33010602011771号
浙公网安备 33010602011771号