hdu 3572 Task Schedule ISAP 网络流 构图
在此 dinic 也过时了
从Lost那里抄过来的模板 复杂度是O(M*(N^2));
而dinic的复杂度也是O(M*(N^2));
理论复杂度虽然一样, 但实际却差很多, 这归根于Gap优化, 即相邻顶点标号差严格等于1, 若存在某个顶点标号的顶点数为0,
则说明不存在增广路;
#include <iostream>
using namespace std;
const int MAXN=1010;
const int MAXM=500010;
typedef struct {int v,next,val;} edge;
edge e[MAXM];
int p[MAXN],eid, ans;
int n,m;
int h[MAXN];
int gap[MAXN];
int source,sink;
inline void insert(int from,int to,int val)
{
e[eid].v=to;
e[eid].val=val;
e[eid].next=p[from];
p[from]=eid++;
e[eid].v=from;
e[eid].val=0;
e[eid].next=p[to];
p[to]=eid++;
}
void init()
{
scanf("%d %d", &n, &m);
int i, P, S, E, j;
memset(p, -1, sizeof(p));
ans = eid = 0;
for (i = 1; i <= n; ++i)
{
scanf("%d %d %d", &P, &S, &E);
ans += P;
insert(0, i, P);
for (j = S; j <= E; ++j)
{
insert(i, n+j, 1);
}
}
for (i = 1; i <= 500; ++i)
{
insert(i+n, n+500+1, m);
}
}
inline int dfs(int pos,int cost, int cnt)
{
if (pos==sink)
{
return cost;
}
int j,minh=cnt-1,lv=cost,d;
for (j=p[pos];j!=-1;j=e[j].next)
{
int v=e[j].v,val=e[j].val;
if(val>0)
{
if (h[v]+1==h[pos])
{
if (lv<e[j].val) d=lv;
else d=e[j].val;
d=dfs(v,d,cnt);
e[j].val-=d;
e[j^1].val+=d;
lv-=d;
if (h[source]>=cnt) return cost-lv;
if (lv==0) break;
}
if (h[v]<minh) minh=h[v];
}
}
if (lv==cost)
{
--gap[h[pos]];
if (gap[h[pos]]==0) h[source]=cnt;
h[pos]=minh+1;
++gap[h[pos]];
}
return cost-lv;
}
int sap(int st,int ed, int cnt)
{
source=st;
sink=ed;
int ret=0;
memset(gap,0,sizeof(gap));
memset(h,0,sizeof(h));
gap[st]=cnt;
while (h[st]<cnt)
{
ret+=dfs(st,INT_MAX, cnt);
}
return ret;
}
int main()
{
int T, cas = 0;
scanf("%d", &T);
while (T--)
{
init();
bool flag = false;
if (ans == sap(0, n+500+1, n+500+2))
{
flag = true;
}
printf("Case %d: %s\n\n", ++cas, flag ? "Yes" : "No");
}
return 0; }
浙公网安备 33010602011771号