bzoj-2338 2338: [HNOI2011]数矩形(计算几何)
题目链接:
2338: [HNOI2011]数矩形
Description

Input
Output
题意:
思路:
求最大的矩形面积,先把这些点转化成线段,记录下线段的长度和中点和两个端点,形成矩形说明对角线长度相等,且共中点,所以把线段按长度和中点排序,如果都相等,然后用三角形的三个顶点坐标计算面积的公式计算最大面积就好了;
AC代码:
/**************************************************************
Problem: 2338
User: LittlePointer
Language: C++
Result: Accepted
Time:5172 ms
Memory:73520 kb
****************************************************************/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <bits/stdc++.h>
#include <stack>
#include <map>
using namespace std;
#define For(i,j,n) for(int i=j;i<=n;i++)
#define mst(ss,b) memset(ss,b,sizeof(ss));
typedef long long LL;
template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar());
for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar());
F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p) {
if(!p) { puts("0"); return; }
while(p) stk[++ tp] = p%10, p/=10;
while(tp) putchar(stk[tp--] + '0');
putchar('\n');
}
const LL mod=1e9+7;
const double PI=acos(-1.0);
const int inf=1e9;
const int N=4e5+10;
const int maxn=1e3+520;
const double eps=1e-12;
struct PO
{
LL x,y;
}po[maxn];
struct Seg
{
PO m;
int s,e;
LL dist;
}seg[maxn*maxn];
inline LL dis(int a,int b)
{
return (po[a].x-po[b].x)*(po[a].x-po[b].x)+(po[a].y-po[b].y)*(po[a].y-po[b].y);
}
int cmp(Seg a,Seg b)
{
if(a.dist==b.dist)
{
if(a.m.x==b.m.x)return a.m.y<b.m.y;
return a.m.x<b.m.x;
}
return a.dist<b.dist;
}
inline LL getans(int a,int b,int c)
{
LL sum=po[a].x*po[b].y+po[b].x*po[c].y+po[c].x*po[a].y;
sum=sum-po[a].x*po[c].y-po[b].x*po[a].y-po[c].x*po[b].y;
if(sum<0)return -sum;
return sum;
}
inline LL solve(int temp,int f)
{
return getans(seg[temp].s,seg[temp].e,seg[f].s);
}
int main()
{
int n;
read(n);
For(i,1,n)
{
read(po[i].x);
read(po[i].y);
}
int cnt=0;
for(int i=1;i<=n;i++)
{
for(int j=i+1;j<=n;j++)
{
cnt++;
seg[cnt].s=i;
seg[cnt].e=j;
seg[cnt].m.x=po[i].x+po[j].x;
seg[cnt].m.y=po[i].y+po[j].y;
seg[cnt].dist=dis(i,j);
}
}
sort(seg,seg+cnt+1,cmp);
LL ans=0;
for(int i=1;i<=cnt;i++)
{
for(int j=i+1;;j++)
{
if(seg[j].dist==seg[i].dist&&seg[j].m.x==seg[i].m.x&&seg[j].m.y==seg[i].m.y)ans=max(ans,solve(j,i));
else break;
}
}
cout<<ans<<"\n";
return 0;
}

浙公网安备 33010602011771号