OpenCV LDA(Linnear Discriminant analysis)类的使用---OpenCV LDA演示样例
1、OpenCV中LDA类的声明
//contrib.hpp
class CV_EXPORTS LDA
{
public:
// Initializes a LDA with num_components (default 0) and specifies how
// samples are aligned (default dataAsRow=true).
LDA(int num_components = 0) :
_num_components(num_components) {};
// Initializes and performs a Discriminant Analysis with Fisher's
// Optimization Criterion on given data in src and corresponding labels
// in labels. If 0 (or less) number of components are given, they are
// automatically determined for given data in computation.
LDA(const Mat& src, vector<int> labels,
int num_components = 0) :
_num_components(num_components)
{
this->compute(src, labels); //! compute eigenvectors and eigenvalues
}
// Initializes and performs a Discriminant Analysis with Fisher's
// Optimization Criterion on given data in src and corresponding labels
// in labels. If 0 (or less) number of components are given, they are
// automatically determined for given data in computation.
LDA(InputArrayOfArrays src, InputArray labels,
int num_components = 0) :
_num_components(num_components)
{
this->compute(src, labels); //! compute eigenvectors and eigenvalues
}
// Serializes this object to a given filename.
void save(const string& filename) const;
// Deserializes this object from a given filename.
void load(const string& filename);
// Serializes this object to a given cv::FileStorage.
void save(FileStorage& fs) const;
// Deserializes this object from a given cv::FileStorage.
void load(const FileStorage& node);
// Destructor.
~LDA() {}
//! Compute the discriminants for data in src and labels.
void compute(InputArrayOfArrays src, InputArray labels);
// Projects samples into the LDA subspace.
Mat project(InputArray src);
// Reconstructs projections from the LDA subspace.
Mat reconstruct(InputArray src);
// Returns the eigenvectors of this LDA.
Mat eigenvectors() const { return _eigenvectors; };
// Returns the eigenvalues of this LDA.
Mat eigenvalues() const { return _eigenvalues; }
protected:
bool _dataAsRow;
int _num_components;
Mat _eigenvectors;
Mat _eigenvalues;
void lda(InputArrayOfArrays src, InputArray labels);
};2、演示样例
// LDA.cpp : 定义控制台应用程序的入口点。
//
#include "stdafx.h"
#include <iostream>
#include <contrib\contrib.hpp>
#include <cxcore.hpp>
using namespace cv;
using namespace std;
int main(void)
{
//sampledata
double sampledata[6][2]={{0,1},{0,2},{2,4},{8,0},{8,2},{9,4}};
Mat mat=Mat(6,2,CV_64FC1,sampledata);
//labels
vector<int>labels;
for(int i=0;i<mat.rows;i++)
{
if(i<mat.rows/2)
{
labels.push_back(0);
}
else
{
labels.push_back(1);
}
}
//do LDA
LDA lda=LDA(mat,labels);
//get the eigenvector
Mat eivector=lda.eigenvectors().clone();
cout<<"The eigenvector is:"<<endl;
for(int i=0;i<eivector.rows;i++)
{
for(int j=0;j<eivector.cols;j++)
{
cout<<eivector.ptr<double>(i)[j]<<" ";
}
cout<<endl;
}
//针对两类分类问题,计算两个数据集的中心
int classNum=2;
vector<Mat> classmean(classNum);
vector<int> setNum(classNum);
for(int i=0;i<classNum;i++)
{
classmean[i]=Mat::zeros(1,mat.cols,mat.type());
setNum[i]=0;
}
Mat instance;
for(int i=0;i<mat.rows;i++)
{
instance=mat.row(i);
if(labels[i]==0)
{
add(classmean[0], instance, classmean[0]);
setNum[0]++;
}
else if(labels[i]==1)
{
add(classmean[1], instance, classmean[1]);
setNum[1]++;
}
else
{}
}
for(int i=0;i<classNum;i++)
{
classmean[i].convertTo(classmean[i],CV_64FC1,1.0/static_cast<double>(setNum[i]));
}
vector<Mat> cluster(classNum);
for(int i=0;i<classNum;i++)
{
cluster[i]=Mat::zeros(1,1,mat.type());
multiply(eivector.t(),classmean[i],cluster[i]);
}
cout<<"The project cluster center is:"<<endl;
for(int i=0;i<classNum;i++)
{
cout<<cluster[i].at<double>(0)<<endl;
}
system("pause");
return 0;
}

浙公网安备 33010602011771号