YY的GCD【莫比乌斯反演】

[Luogu2257]YY的GCD
\(\sum_{i=1}^n\sum_{j=1}^m[(x, y)\)为质数\(]\)
\(T \le {10}^4, 1\le n, m \le {10}^7\)
假设\(p\)\(M\)以内的质数

\[\begin{aligned}ans&=\sum_{p\in prime}\sum_{i=1}^n\sum_{j=1}^m[(i, j) == p]\\ &=\sum_{p\in prime}\sum_{x=1}^{\lfloor\frac{n}{p}\rfloor}\mu(x)\lfloor\frac{n}{xp}\rfloor\lfloor\frac{m}{xp}\rfloor\end{aligned}\]

\(T=xp\)

\[\begin{aligned}ans&=\sum_{T=1}^n\sum_{p\in prime \;\&\&\; p|T}{\mu(\frac{T}{p})\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor}\\ &=\sum_{T=1}^n\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor\sum_{p\in prime \;\&\&\; p|T}\mu(\frac{T}{q}) \end{aligned} \]

只要筛出\(G(T)=\sum_{p\in prime \;\&\&\; p|T}\mu(\frac{T}{q})\)就可以\(O(\sqrt{N})\)算出

\[ans=\sum_{T=1}^n\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor G(T) \]

这题除了\(ans\)都不能开\(long\;long\),不然会\(TLE\)

void init(){
	miu[1]=1;
	for(int i=2; i < Maxn; i++){
		if(!p[i]) p[++ptot]=i, miu[i]=-1;
		for(int j=1, x; j <= ptot && (x=p[j]*i) < Maxn; j++){
			p[x]=1; if(i%p[j] == 0) break; miu[x]=-miu[i];
		}
	}
	for(int i=1; i <= ptot; i++) for(int j=p[i]; j < Maxn; j+=p[i]) G[j]+=miu[j/p[i]];
	for(int i=1; i < Maxn; i++) G[i]+=G[i-1];
}
void solve(){
	init(); int T=read();
	while(T--){
		n=read(), m=read(); ll ans=0; if(n > m) swap(n, m);
		for(int l=1, r=0; r < n; l=r+1){
			r=min(n/(n/l), m/(m/l));
			ans+=1ll*(G[r]-G[l-1])*(n/l)*(m/l);
		}
		printf("%lld\n", ans);
	}
}
posted @ 2018-07-14 20:51  zerolt  阅读(120)  评论(0编辑  收藏  举报