HDU1003——DP——Max Sum
Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
Sample Output
Case 1:
14 1 4
Case 2:
7 1 6
Author
Ignatius.L
Recommend
很简单的dp,dp[i]表示以i为开头的值
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn = 100010;
const int inf = 0x3f3f3f3f;
int a[maxn],dp[maxn];
int T,n;
int main()
{
scanf("%d",&T);
for(int cas = 1; cas <= T; cas++){
scanf("%d",&n);
for(int i = 1; i <= n ;i++){
scanf("%d",&a[i]);
dp[i] = a[i];
}
for(int i = n-1; i >= 1; i--){
dp[i] = max(dp[i], dp[i+1] + a[i]);
}
// for(int i = 1; i <= n; i++)
// printf("%d ",dp[i]);
int index;
int max1 = -inf;
for(int i = 1; i <= n ;i++){
if(max1 < dp[i]){
max1 = dp[i];
index = i;
}
}
int res = 0;
int index1;
for(int i = index; i <= n; i++){
res += a[i];
if(res == max1){
index1 = i;
break;
}
}
printf("Case %d:\n",cas);
printf("%d %d %d\n",max1,index,index1);
if(cas < T) printf("\n");
}
return 0;
}

浙公网安备 33010602011771号