Django框架项目——redis操作、Celery
1-redis操作
redis介绍
redis安装
"""
1、官网下载:安装包或是绿色面安装
2、安装并配置环境变量
"""
redis VS mysql
"""
redis: 内存数据库(读写快)、非关系型(操作数据方便、数据固定)
mysql: 硬盘数据库(数据持久化)、关系型(操作数据间关系、可以不同组合)
大量访问的临时数据,才有redis数据库更优
"""
redis VS memcache
"""
redis: 操作字符串、列表、字典、无序集合、有序集合 | 支持数据持久化(数据丢失可以找回(默认持久化,主动持久化save)、可以将数据同步给mysql) | 高并发支持
memcache: 操作字符串 | 不支持数据持久化 | 并发量小
"""
Redis操作
启动服务
"""
前提:前往一个方便管理redis持久化文件的逻辑再启动服务:dump.rdb
1)前台启动服务
>: redis-server
2)后台启动服务
>: redis-server --service-start
注)Linux系统后台启动(或是修改配置文件,建议采用方式)
>: redis-server &
3)配置文件启动前台服务
>: redis-server 配置文件的绝对路径
4)配置文件启动后台服务
注)windows系统默认按Redis安装包下的redis.windows-service.conf配置文件启动
>: redis-server --service-start
注)Linux系统可以完全自定义配置文件(redis.conf)后台启动
>: redis-server 配置文件的绝对路径 &
"""
"""
windows系统
1)前台启动
i)打开终端切换到redis安装目录
>: cd C:\Apps\Redis
ii)启动服务
>: redis-server redis.windows.conf
2)后台启动
i)打开终端切换到redis安装目录
>: cd C:\Apps\Redis
ii)启动服务(后面的配置文件可以省略)
>: redis-server --service-start redis.windows-service.conf
"""
密码管理
"""
1)提倡在配置文件中配置,采用配置文件启动
requirepass 密码
2)当服务启动后,并且连入数据库(redis数据库不能轻易重启),可以再改当前服务的密码(服务重启,密码重置)
config set requirepass 新密码
3)已连入数据库,可以查看当前数据库服务密码
config get requirepass
"""
连接数据库
"""
1)默认连接:-h默认127.0.0.1,-p默认6379,-n默认0,-a默认无
>: redis-cli
2)完整连接:
>: redis-cli -h ip地址 -p 端口号 -n 数据库编号 -a 密码
3)先连接,后输入密码
>: redis-cli -h ip地址 -p 端口号 -n 数据库编号
>: auth 密码
"""
切换数据库
"""
1)在连入数据库后执行
>: select 数据库编号
"""
关闭服务
"""
1)先连接数据库,再关闭redis服务
>: redis-cli -h ip地址 -p 端口号 -n 数据库编号 -a 密码
>: shutdown
2)直接连接数据库并关闭redis服务
>: redis-cli -h ip地址 -p 端口号 -n 数据库编号 -a 密码 shutdown
"""
清空redis数据库
"""
1)连接数据库执行
>: flushall
"""
数据持久化
"""
1)配置文件默认配置
save 900 1 # 超过900秒有1个键值对操作,会自动调用save完成数据持久化
save 300 10 # 超过300秒有10个键值对操作,会自动调用save完成数据持久化
save 60 10000 # 超过60秒有10000个键值对操作,会自动调用save完成数据持久化
2)安全机制
# 当redis服务不可控宕机,会默认调用一下save完成数据持久化(如果数据量过大,也可能存在部分数据丢失)
3)主动持久化
>: save # 连入数据库时,主动调用save完成数据持久化
注:数据持久化默认保存文件 dump.rdb,保存路径默认为启动redis服务的当前路径
"""
redis相关配置
"""
1)绑定的ip地址,多个ip用空格隔开
bind 127.0.0.1
2)端口,默认6379,一般不做修改
port 6379
3)是否以守护进程启动,默认为no,一般改为yes代表后台启动(windows系统不支持)
daemonize no
4)定义日志级别,默认值为notice,有如下4种取值:
debug(记录大量日志信息,适用于开发、测试阶段)
verbose(较多日志信息)
notice(适量日志信息,使用于生产环境)
warning(仅有部分重要、关键信息才会被记录)
loglevel notice
5)配置日志文件保持地址,默认打印在命令行终端的窗口上
如果填写 "./redis.log" 就会在启动redis服务的终端所在目录下,用redis.log记录redis日志
logfile ""
eg)终端首先切断到log文件夹所在目录(一般就可以采用redis的安装目录,也可以自定义),再启动reids服务
logfile "./log/redis.log"
6)数据库个数,默认是16个,没特殊情况,不建议修改
databases 16
7)数据持久化
save 900 1 # 超过900秒有1个键值对操作,会自动调用save完成数据持久化
save 300 10 # 超过300秒有10个键值对操作,会自动调用save完成数据持久化
save 60 10000 # 超过60秒有10000个键值对操作,会自动调用save完成数据持久化
8)数据库持久化到硬盘失败,redis会立即停止接收用户数据,让用户知道redis持久化异常,避免数据灾难发生(重启redis即可),默认为yes,不能做修改
stop-writes-on-bgsave-error yes
9)消耗cpu来压缩数据进行持久化,数据量小,但会消耗cpu性能,根据实际情况可以做调整
rdbcompression yes
10)增持cpu 10%性能销毁来完成持久化数据的校验,可以取消掉
rdbchecksum yes
11)持久化存储的文件名称
dbfilename dump.rdb
12)持久化存储文件的路径,默认是启动服务的终端所在目录
dir ./
13)reids数据库密码
requirepass 密码
"""
Redis数据类型
"""
数据操作:字符串、列表、哈希(字典)、无序集合、有序(排序)集合
有序集合:游戏排行榜
字符串:
set key value
get key
mset k1 v1 k2 v2 ...
mget k1 k2 ...
setex key exp value
incrby key increment
列表:
rpush key value1 value2 ...
lpush key value1 value2 ...
lrange key bindex eindex
lindex key index
lpop key | rpop key
linsert key before|after old_value new_value
哈希:
hset key field value
hget key field
hmset key field1 value1 field2 value2 ...
hmget key field1 field2
hkeys key
hvals key
hdel key field
集合:
sadd key member1 member2 ...
sdiff key1 key2 ...
sdiffstore newkey key1 key2 ...
sinter key1 key2 ...
sunion key1 key2 ...
smembers key
spop key
有序集合:
zadd key grade1 member1 grade2 member2 ...
zincrby key grade member
zrange key start end
zrevrange key start end
"""
python使用redis
依赖
>: pip3 install redis
直接使用
import redis
# decode_responses=True得到的结果会自动解码(不是二进制数据)
r = redis.Redis(host='127.0.0.1', port=6379, db=1, password=None, decode_responses=True)
连接池使用
import redis
pool = redis.ConnectionPool(host='127.0.0.1', port=6379, db=1, max_connections=100, password=None, decode_responses=True)
r = redis.Redis(connection_pool=pool)
缓存使用:要额外安装 django-redis
# 1.将缓存存储位置配置到redis中:settings.py
CACHES = {
"default": {
"BACKEND": "django_redis.cache.RedisCache",
"LOCATION": "redis://127.0.0.1:6379/0",
"OPTIONS": {
"CLIENT_CLASS": "django_redis.client.DefaultClient",
"CONNECTION_POOL_KWARGS": {"max_connections": 100},
"DECODE_RESPONSES": True,
"PASSWORD": "",
}
}
}
# 2.操作cache模块直接操作缓存:views.py
from django.core.cache import cache # 结合配置文件实现插拔式
# 存放token,可以直接设置过期时间
cache.set('token', 'header.payload.signature', 300)
# 取出token
token = cache.get('token')
Celery
官方
Celery 官网:http://www.celeryproject.org/
Celery 官方文档英文版:http://docs.celeryproject.org/en/latest/index.html
Celery 官方文档中文版:http://docs.jinkan.org/docs/celery/
Celery是一个简单、灵活且可靠的,处理大量消息的分布式系统
专注于实时处理的异步任务队列
同时也支持任务调度
注意:
Celery is a project with minimal funding, so we don’t support Microsoft Windows. Please don’t open any issues related to that platform.
Celery异步任务框架
"""
1)可以不依赖任何服务器,通过自身命令,启动服务(内部支持socket)
2)celery服务为为其他项目服务提供异步解决任务需求的
注:会有两个服务同时运行,一个是项目服务,一个是celery服务,项目服务将需要异步处理的任务交给celery服务,celery就会在需要时异步完成项目的需求
人是一个独立运行的服务 | 医院也是一个独立运行的服务
正常情况下,人可以完成所有健康情况的动作,不需要医院的参与;但当人生病时,就会被医院接收,解决人生病问题
人生病的处理方案交给医院来解决,所有人不生病时,医院独立运行,人生病时,医院就来解决人生病的需求
"""
Celery架构
Celery的架构由三部分组成,消息中间件(message broker)、任务执行单元(worker)和 任务执行结果存储(task result store)组成。

消息中间件
Celery本身不提供消息服务,但是可以方便的和第三方提供的消息中间件集成。包括,RabbitMQ, Redis等等
任务执行单元
Worker是Celery提供的任务执行的单元,worker并发的运行在分布式的系统节点中。
任务结果存储
Task result store用来存储Worker执行的任务的结果,Celery支持以不同方式存储任务的结果,包括AMQP, redis等
使用场景
异步执行:解决耗时任务,将耗时操作任务提交给Celery去异步执行,比如发送短信/邮件、消息推送、音视频处理等等
延迟执行:解决延迟任务
定时执行:解决周期(周期)任务,比如每天数据统计
Celery的安装配置
pip install celery
消息中间件:RabbitMQ/Redis
app=Celery(‘任务名’, broker=’xxx’, backend=’xxx’)
两种celery任务结构:提倡用包管理,结构更清晰
# 如果 Celery对象:Celery(...) 是放在一个模块下的
# 1)终端切换到该模块所在文件夹位置:scripts
# 2)执行启动worker的命令:celery worker -A 模块名 -l info -P eventlet
# 注:windows系统需要eventlet支持,Linux与MacOS直接执行:celery worker -A 模块名 -l info
# 注:模块名随意
# 如果 Celery对象:Celery(...) 是放在一个包下的
# 1)必须在这个包下建一个celery.py的文件,将Celery(...)产生对象的语句放在该文件中
# 2)执行启动worker的命令:celery worker -A 包名 -l info -P eventlet
# 注:windows系统需要eventlet支持,Linux与MacOS直接执行:celery worker -A 模块名 -l info
# 注:包名随意
Celery执行异步任务
基本结构
# 创建py文件:celery_app_task.py
import celery
import time
# broker='redis://127.0.0.1:6379/2' 不加密码
backend='redis://:123456@127.0.0.1:6379/1'
broker='redis://:123456@127.0.0.1:6379/2'
cel=celery.Celery('test',backend=backend,broker=broker)
@cel.task
def add(x,y):
return x+y
包架构封装(多任务结构)
project
├── celery_task # celery包
│ ├── __init__.py # 包文件
│ ├── celery.py # celery连接和配置相关文件,且名字必须叫celery.py
│ └── tasks.py # 所有任务函数
├── add_task.py # 添加任务
└── get_result.py # 获取结果
基本使用
celery.py
# 1)创建app + 任务
# 2)启动celery(app)服务:
# 非windows
# 命令:celery worker -A celery_task -l info
# windows:
# pip3 install eventlet
# celery worker -A celery_task -l info -P eventlet
# 3)添加任务:手动添加,要自定义添加任务的脚本,右键执行脚本
# 4)获取结果:手动获取,要自定义获取任务的脚本,右键执行脚本
from celery import Celery
broker = 'redis://127.0.0.1:6379/1'
backend = 'redis://127.0.0.1:6379/2'
app = Celery(broker=broker, backend=backend, include=['celery_task.tasks'])
tasks.py
from .celery import app
import time
@app.task
def add(n, m):
print(n)
print(m)
time.sleep(10)
print('n+m的结果:%s' % (n + m))
return n + m
@app.task
def low(n, m):
print(n)
print(m)
print('n-m的结果:%s' % (n - m))
return n - m
add_task.py
from celery_task import tasks
# 添加立即执行任务
t1 = tasks.add.delay(10, 20)
t2 = tasks.low.delay(100, 50)
print(t1.id)
# 添加延迟任务
from datetime import datetime, timedelta
eta=datetime.utcnow() + timedelta(seconds=10)
tasks.low.apply_async(args=(200, 50), eta=eta)
get_result.py
from celery_task.celery import app
from celery.result import AsyncResult
id = '21325a40-9d32-44b5-a701-9a31cc3c74b5'
if __name__ == '__main__':
async = AsyncResult(id=id, app=app)
if async.successful():
result = async.get()
print(result)
elif async.failed():
print('任务失败')
elif async.status == 'PENDING':
print('任务等待中被执行')
elif async.status == 'RETRY':
print('任务异常后正在重试')
elif async.status == 'STARTED':
print('任务已经开始被执行')
高级使用
celery.py
# 1)创建app + 任务
# 2)启动celery(app)服务:
# 非windows
# 命令:celery worker -A celery_task -l info
# windows:
# pip3 install eventlet
# celery worker -A celery_task -l info -P eventlet
# 3)添加任务:自动添加任务,所以要启动一个添加任务的服务
# 命令:celery beat -A celery_task -l info
# 4)获取结果
from celery import Celery
broker = 'redis://127.0.0.1:6379/1'
backend = 'redis://127.0.0.1:6379/2'
app = Celery(broker=broker, backend=backend, include=['celery_task.tasks'])
# 时区
app.conf.timezone = 'Asia/Shanghai'
# 是否使用UTC
app.conf.enable_utc = False
# 任务的定时配置
from datetime import timedelta
from celery.schedules import crontab
app.conf.beat_schedule = {
'low-task': {
'task': 'celery_task.tasks.low',
'schedule': timedelta(seconds=3),
# 'schedule': crontab(hour=8, day_of_week=1), # 每周一早八点
'args': (300, 150),
}
}
tasks.py
from .celery import app
import time
@app.task
def add(n, m):
print(n)
print(m)
time.sleep(10)
print('n+m的结果:%s' % (n + m))
return n + m
@app.task
def low(n, m):
print(n)
print(m)
print('n-m的结果:%s' % (n - m))
return n - m
get_result.py
from celery_task.celery import app
from celery.result import AsyncResult
id = '21325a40-9d32-44b5-a701-9a31cc3c74b5'
if __name__ == '__main__':
async = AsyncResult(id=id, app=app)
if async.successful():
result = async.get()
print(result)
elif async.failed():
print('任务失败')
elif async.status == 'PENDING':
print('任务等待中被执行')
elif async.status == 'RETRY':
print('任务异常后正在重试')
elif async.status == 'STARTED':
print('任务已经开始被执行')
django中使用
celery.py
"""
celery框架django项目工作流程
1)加载django配置环境
2)创建Celery框架对象app,配置broker和backend,得到的app就是worker
3)给worker对应的app添加可处理的任务函数,用include配置给worker的app
4)完成提供的任务的定时配置app.conf.beat_schedule
5)启动celery服务,运行worker,执行任务
6)启动beat服务,运行beat,添加任务
重点:由于采用了django的反射机制,使用celery.py所在的celery_task包必须放置项目的根目录下
"""
# 一、加载django配置环境
import os
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "luffyapi.settings.dev")
# 二、加载celery配置环境
from celery import Celery
# broker
broker = 'redis://127.0.0.1:6379/0'
# backend
backend = 'redis://127.0.0.1:6379/1'
# worker
app = Celery(broker=broker, backend=backend, include=['celery_task.tasks'])
# 时区
app.conf.timezone = 'Asia/Shanghai'
# 是否使用UTC
app.conf.enable_utc = False
# 任务的定时配置
from datetime import timedelta
from celery.schedules import crontab
app.conf.beat_schedule = {
'update-banner-list': {
'task': 'celery_task.tasks.update_banner_list',
'schedule': timedelta(seconds=10),
'args': (),
}
}
tasks.py
from .celery import app
from django.core.cache import cache
from home import models, serializers
from django.conf import settings
@app.task
def update_banner_list():
queryset = models.Banner.objects.filter(is_delete=False, is_show=True).order_by('-orders')[:settings.BANNER_COUNT]
banner_list = serializers.BannerSerializer(queryset, many=True).data
# 拿不到request对象,所以头像的连接base_url要自己组装
for banner in banner_list:
banner['image'] = 'http://127.0.0.1:8000%s' % banner['image']
cache.set('banner_list', banner_list, 86400)
return True
本文来自博客园,作者:喝茶看猴戏,转载请注明原文链接:https://www.cnblogs.com/zdwzdwzdw/p/17487881.html

浙公网安备 33010602011771号