深度学习实践1

对W利用穷举法在【0,4】中每0.1步长寻找最优解
import numpy as np
import matplotlib.pyplot as plt

x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]


def forward(x):
return x*w


def loss(x, y):
y_pred = forward(x)
return (y_pred - y)**2


# 穷举法
w_list = []
mse_list = []
for w in np.arange(0.0, 4.1, 0.1):
print("w=", w)
l_sum = 0
for x_val, y_val in zip(x_data, y_data):
y_pred_val = forward(x_val)
loss_val = loss(x_val, y_val)
l_sum += loss_val
print('\t', x_val, y_val, y_pred_val, loss_val)
print('MSE=', l_sum/3)
w_list.append(w)
mse_list.append(l_sum/3)

plt.plot(w_list,mse_list)
plt.ylabel('Loss')
plt.xlabel('w')
plt.show()



posted on 2022-06-17 10:35  zc-DN  阅读(30)  评论(0)    收藏  举报

导航