这个练习,使用反向传播的前馈神经网络处理手写数字数据集。
通过反向传播算法实现神经网络成本函数和梯度计算的非正则化和正则化版本。
还将实现随机权重初始化和使用网络进行预测的方法。
神经网络的反向传播算法有些复杂,计算的细节很难捋顺,对程序的理解还不到位。
#调入包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.io import loadmat
data = loadmat('ex4data1.mat')
X = data['X']
y = data['y']
from sklearn.preprocessing import OneHotEncoder
encoder = OneHotEncoder(sparse=False)
y_onehot = encoder.fit_transform(y)
y_onehot.shape
y[0], y_onehot[0,:]
#定义S函数
def sigmoid(z):
return 1 / (1 + np.exp(-z))
#前馈函数
def forward_propagate(X, theta1, theta2):
m = X.shape[0]
a1 = np.insert(X, 0, values=np.ones(m), axis=1)
z2 = a1 * theta1.T
a2 = np.insert(sigmoid(z2), 0, values=np.ones(m), axis=1)
z3 = a2 * theta2.T
h = sigmoid(z3)
return a1, z2, a2, z3, h
#代价函数
def cost(params, input_size, hidden_size, num_labels, X, y, learning_rate):
m = X.shape[0]
X = np.matrix(X)
y = np.matrix(y)
# reshape the parameter array into parameter matrices for each layer
theta1 = np.matrix(np.reshape(params[:hidden_size * (input_size + 1)], (hidden_size, (input_size + 1))))
theta2 = np.matrix(np.reshape(params[hidden_size * (input_size + 1):], (num_labels, (hidden_size + 1))))
# run the feed-forward pass
a1, z2, a2, z3, h = forward_propagate(X, theta1, theta2)
# compute the cost
J = 0
for i in range(m):
first_term = np.multiply(-y[i, :], np.log(h[i, :]))
second_term = np.multiply((1 - y[i, :]), np.log(1 - h[i, :]))
J += np.sum(first_term - second_term)
J = J / m
return J
# 初始化设置
input_size = 400
hidden_size = 25
num_labels = 10
learning_rate = 1
# 随机初始化完整网络参数大小的参数数组
params = (np.random.random(size=hidden_size * (input_size + 1) + num_labels * (hidden_size + 1)) - 0.5) * 0.25
m = X.shape[0]
X = np.matrix(X)
y = np.matrix(y)
# 将参数数组解开为每个层的参数矩阵
theta1 = np.matrix(np.reshape(params[:hidden_size * (input_size + 1)], (hidden_size, (input_size + 1))))
theta2 = np.matrix(np.reshape(params[hidden_size * (input_size + 1):], (num_labels, (hidden_size + 1))))
theta1.shape, theta2.shape
a1, z2, a2, z3, h = forward_propagate(X, theta1, theta2)
a1.shape, z2.shape, a2.shape, z3.shape, h.shape
cost(params, input_size, hidden_size, num_labels, X, y_onehot, learning_rate)
#S函数梯度
def sigmoid_gradient(z):
return np.multiply(sigmoid(z), (1 - sigmoid(z)))
def backprop(params, input_size, hidden_size, num_labels, X, y, learning_rate):
m = X.shape[0]
X = np.matrix(X)
y = np.matrix(y)
# reshape the parameter array into parameter matrices for each layer
theta1 = np.matrix(np.reshape(params[:hidden_size * (input_size + 1)], (hidden_size, (input_size + 1))))
theta2 = np.matrix(np.reshape(params[hidden_size * (input_size + 1):], (num_labels, (hidden_size + 1))))
# run the feed-forward pass
a1, z2, a2, z3, h = forward_propagate(X, theta1, theta2)
# initializations
J = 0
delta1 = np.zeros(theta1.shape) # (25, 401)
delta2 = np.zeros(theta2.shape) # (10, 26)
# compute the cost
for i in range(m):
first_term = np.multiply(-y[i, :], np.log(h[i, :]))
second_term = np.multiply((1 - y[i, :]), np.log(1 - h[i, :]))
J += np.sum(first_term - second_term)
J = J / m
# add the cost regularization term
J += (float(learning_rate) / (2 * m)) * (np.sum(np.power(theta1[:, 1:], 2)) + np.sum(np.power(theta2[:, 1:], 2)))
# perform backpropagation
for t in range(m):
a1t = a1[t, :] # (1, 401)
z2t = z2[t, :] # (1, 25)
a2t = a2[t, :] # (1, 26)
ht = h[t, :] # (1, 10)
yt = y[t, :] # (1, 10)
d3t = ht - yt # (1, 10)
z2t = np.insert(z2t, 0, values=np.ones(1)) # (1, 26)
d2t = np.multiply((theta2.T * d3t.T).T, sigmoid_gradient(z2t)) # (1, 26)
delta1 = delta1 + (d2t[:, 1:]).T * a1t
delta2 = delta2 + d3t.T * a2t
delta1 = delta1 / m
delta2 = delta2 / m
# unravel the gradient matrices into a single array
grad = np.concatenate((np.ravel(delta1), np.ravel(delta2)))
return J, grad
J, grad = backprop(params, input_size, hidden_size, num_labels, X, y_onehot, learning_rate)
J, grad.shape
from scipy.optimize import minimize
# minimize the objective function
fmin = minimize(fun=backprop, x0=params, args=(input_size, hidden_size, num_labels, X, y_onehot, learning_rate),
method='TNC', jac=True, options={'maxiter': 250})
fmin
X = np.matrix(X)
theta1 = np.matrix(np.reshape(fmin.x[:hidden_size * (input_size + 1)], (hidden_size, (input_size + 1))))
theta2 = np.matrix(np.reshape(fmin.x[hidden_size * (input_size + 1):], (num_labels, (hidden_size + 1))))
a1, z2, a2, z3, h = forward_propagate(X, theta1, theta2)
y_pred = np.array(np.argmax(h, axis=1) + 1)
y_pred
#精确度
correct = [1 if a == b else 0 for (a, b) in zip(y_pred, y)]
accuracy = (sum(map(int, correct)) / float(len(correct)))
print ('accuracy = {0}%'.format(accuracy * 100))