缓存空值解决缓存穿透,互斥锁和逻辑过期解决缓存击穿

  • 缓存穿透

客户端请求的数据在缓存中和数据库中都不存在,这样缓存永远不会生效,这些请求都会被打到数据库

解决方法:缓存空对象、布隆过滤

其他解决办法:增强 id 复杂度,避免被猜测 id 规律、做好数据的基础格式校验、加强用户权限校验、做好热点参数的限流


  • 缓存雪崩

缓存雪崩是指同一时段大量的缓存 key 同时失效或者 Redis 服务宕机,导致大量请求到达数据库,带来巨大压力

解决方法:给不同的 key 的 TTL 添加添加随机值、利用 Redis 集群提高服务的可用性、给缓存业务添加降级限流策略、给业务添加多级缓存


  • 缓存击穿

也叫热点 key 问题,就是一个被高并发访问并且缓存重建业务较复杂的 key 突然失效了,无数的请求访问在瞬间给数据库带来了巨大的冲击

解决方案:互斥锁、逻辑过期


封装工具类:

package com.cache.utils;

import cn.hutool.core.util.BooleanUtil;
import cn.hutool.core.util.StrUtil;
import cn.hutool.json.JSONObject;
import cn.hutool.json.JSONUtil;
import lombok.extern.slf4j.Slf4j;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.stereotype.Component;

import java.time.LocalDateTime;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;
import java.util.function.Function;

import static com.cache.utils.RedisConstants.CACHE_NULL_TTL;
import static com.cache.utils.RedisConstants.LOCK_SHOP_KEY;

@Slf4j
@Component
public class CacheClient {

    private final StringRedisTemplate stringRedisTemplate;

    private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);

    public CacheClient(StringRedisTemplate stringRedisTemplate) {
        this.stringRedisTemplate = stringRedisTemplate;
    }
    
    // 设置缓存值
    public void set(String key, Object value, Long time, TimeUnit unit) {
        stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(value), time, unit);
    }

    // 设置缓存的逻辑过期时间
    public void setWithLogicalExpire(String key, Object value, Long time, TimeUnit unit) {
        // 设置逻辑过期
        RedisData redisData = new RedisData();
        redisData.setData(value);
        redisData.setExpireTime(LocalDateTime.now().plusSeconds(unit.toSeconds(time)));
        // 写入Redis
        stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(redisData));
    }

    // 使用 缓存空值 的方法解决 缓存穿透 的问题
    public <R,ID> R queryWithPassThrough(
            String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit){
        String key = keyPrefix + id;
        // 1.从redis查询商铺缓存
        String json = stringRedisTemplate.opsForValue().get(key);
        // 2.判断是否存在
        if (StrUtil.isNotBlank(json)) {
            // 3.存在,直接返回
            return JSONUtil.toBean(json, type);
        }
        // 判断命中的是否是空值
        if (json != null) {
            // 返回一个错误信息
            return null;
        }

        // 4.不存在,根据id查询数据库
        R r = dbFallback.apply(id);
        // 5.不存在,返回错误
        if (r == null) {
            // 将空值写入redis
            stringRedisTemplate.opsForValue().set(key, "", CACHE_NULL_TTL, TimeUnit.MINUTES);
            // 返回错误信息
            return null;
        }
        // 6.存在,写入redis
        this.set(key, r, time, unit);
        return r;
    }

    // 使用 互斥锁 的方法解决 缓存击穿 的问题
    public <R, ID> R queryWithMutex(
            String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit) {
        String key = keyPrefix + id;
        // 1.从redis查询商铺缓存
        String shopJson = stringRedisTemplate.opsForValue().get(key);
        // 2.判断是否存在
        if (StrUtil.isNotBlank(shopJson)) {
            // 3.存在,直接返回
            return JSONUtil.toBean(shopJson, type);
        }
        // 判断命中的是否是空值
        if (shopJson != null) {
            // 返回一个错误信息
            return null;
        }

        // 4.实现缓存重建
        // 4.1.获取互斥锁
        String lockKey = "lock:shop:" + id;
        R r = null;
        try {
            boolean isLock = tryLock(lockKey);
            // 4.2.判断是否获取成功
            if (!isLock) {
                // 4.3.获取锁失败,休眠并重试
                Thread.sleep(50);
                return queryWithMutex(keyPrefix, id, type, dbFallback, time, unit);
            }
            // 4.4.获取锁成功,根据id查询数据库
            r = dbFallback.apply(id);
            // 5.不存在,返回错误
            if (r == null) {
                // 将空值写入redis
                stringRedisTemplate.opsForValue().set(key, "", CACHE_NULL_TTL, TimeUnit.MINUTES);
                // 返回错误信息
                return null;
            }
            // 6.存在,写入redis
            this.set(key, r, time, unit);
        } catch (InterruptedException e) {
            throw new RuntimeException(e);
        }finally {
            // 7.释放锁
            unlock(lockKey);
        }
        // 8.返回
        return r;
    }

    // 使用 逻辑过期 的方法解决 缓存击穿 的问题
    public <R, ID> R queryWithLogicalExpire(
            String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit) {
        String key = keyPrefix + id;
        // 1.从redis查询商铺缓存
        String json = stringRedisTemplate.opsForValue().get(key);
        // 2.判断是否存在
        if (StrUtil.isBlank(json)) {
            // 3.存在,直接返回
            return null;
        }
        // 4.命中,需要先把json反序列化为对象
        RedisData redisData = JSONUtil.toBean(json, RedisData.class);
        R r = JSONUtil.toBean((JSONObject) redisData.getData(), type);
        LocalDateTime expireTime = redisData.getExpireTime();
        // 5.判断是否过期
        if(expireTime.isAfter(LocalDateTime.now())) {
            // 5.1.未过期,直接返回店铺信息
            return r;
        }
        // 5.2.已过期,需要缓存重建
        // 6.缓存重建
        // 6.1.获取互斥锁
        String lockKey = "lock:shop:" + id;
        boolean isLock = tryLock(lockKey);
        // 6.2.判断是否获取锁成功
        if (isLock){
            // 6.3.成功,开启独立线程,实现缓存重建
            CACHE_REBUILD_EXECUTOR.submit(() -> {
                try {
                    // 查询数据库
                    R newR = dbFallback.apply(id);
                    // 重建缓存
                    this.setWithLogicalExpire(key, newR, time, unit);
                } catch (Exception e) {
                    throw new RuntimeException(e);
                }finally {
                    // 释放锁
                    unlock(lockKey);
                }
            });
        }
        // 6.4.返回过期的商铺信息
        return r;
    }
    
    // 获取锁
    private boolean tryLock(String key) {
        // SETNX
        Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);
        return BooleanUtil.isTrue(flag);
    }

    private void unlock(String key) {
        stringRedisTemplate.delete(key);
    }
}

使用方法:

package com.demo.service.impl;

import cn.hutool.core.util.StrUtil;
import com.baomidou.mybatisplus.extension.plugins.pagination.Page;
import com.baomidou.mybatisplus.extension.service.impl.ServiceImpl;
import com.demo.dto.Result;
import com.demo.entity.Shop;
import com.demo.mapper.ShopMapper;
import com.demo.service.IShopService;
import com.demo.utils.CacheClient;
import com.demo.utils.SystemConstants;
import org.springframework.data.geo.Distance;
import org.springframework.data.geo.GeoResult;
import org.springframework.data.geo.GeoResults;
import org.springframework.data.redis.connection.RedisGeoCommands;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.data.redis.domain.geo.GeoReference;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;

import javax.annotation.Resource;
import java.util.*;
import java.util.concurrent.TimeUnit;

import static com.hmdp.utils.RedisConstants.*;

/**
 * <p>
 *  服务实现类
 * </p>
 *
 */
@Service
public class ShopServiceImpl extends ServiceImpl<ShopMapper, Shop> implements IShopService {

    @Resource
    private StringRedisTemplate stringRedisTemplate;

    @Resource
    private CacheClient cacheClient;

    @Override
    public Result queryById(Long id) {
        // 解决缓存穿透
        Shop shop = cacheClient
                .queryWithPassThrough("cache:shop:", id, Shop.class, this::getById, CACHE_SHOP_TTL, TimeUnit.MINUTES);

        // 互斥锁解决缓存击穿
        // Shop shop = cacheClient
        //         .queryWithMutex("cache:shop:", id, Shop.class, this::getById, CACHE_SHOP_TTL, TimeUnit.MINUTES);

        // 逻辑过期解决缓存击穿
        // Shop shop = cacheClient
        //         .queryWithLogicalExpire("cache:shop:", id, Shop.class, this::getById, 20L, TimeUnit.SECONDS);

        if (shop == null) {
            return Result.fail("店铺不存在!");
        }
        // 返回
        return Result.ok(shop);
    }
}

posted @ 2025-08-26 14:29  鹿鹿脖子长  阅读(7)  评论(0)    收藏  举报