ping源码解析

ping的源码解析

1、下载Ubuntu的ping源码

  1. 查看ping的源码在哪个包下

  2. 下载源码包:apt-get source iputils-ping

    • 如果出现了"You must put some 'source' URIs in your sources.list"错误,需要先在系统设置->Software&Updates里把Source code选项打开
    • 下载的源代码在当前的文件夹下

2、编译/执行ping

  1. 在源码文件夹iputils-20121221下执行make ping

    如果出现了"fatal error: sys/capability.h: No such file or directory
    compilation terminated"错误,则执行"apt-get install libcap-dev"

  2. 得到编译好的ping.o和ping的可执行文件。测试是否能用。

3、源码分析

  1. 查看makefile可以看到,ping主要是由ping_common.h、ping_common.c、ping.c编译得来的。
  2. 查看ping.c里包含的头文件,包括netinet/ip.h、netinet/ip_icmp.h、ifaddrs.h。在/usr/include下把这些头文件也给找到。
    • find指令:find /usr/include -name ip.h
    • 整体结构图

4、main函数

先从最顶层开始看,且由于ping的选项很多,关注顶层时不要死抓住各种选项的设置不放,先通过研究ping的最基本用法【ping 地址】来理清主要框架。

// 全局变量和结构声明
struct sockaddr_in whereto;	/* who to ping */
int optlen = 0;
int settos = 0;			/* Set TOS, Precendence or other QOS options */
int icmp_sock;			/* socket file descriptor */
u_char outpack[0x10000];
int maxpacket = sizeof(outpack);
struct sockaddr_in source;

// sockaddr_in定义在<netinet/in.h>中,这里把它拿过来
struct sockaddr_in {
    sa_family_t    sin_family;         //地址族
    uint16_t        sin_port;            // 16位TCP/UDP端口号
    struct in_addr    sin_addr;     //32位IP地址
    char             sin_zero[8];       //不使用
}
int main(int argc, char **argv)
{
	struct hostent *hp;
	int ch, hold, packlen;
	int socket_errno;
	u_char *packet;
	char *target;
//把预编译的东西折叠不看
#ifdef USE_IDN...
#else...
#endif

	char rspace[3 + 4 * NROUTES + 1];	/* record route space */
	limit_capabilities();

#ifdef USE_IDN...
#endif
        enable_capability_raw();
	//创建icmp套接字
	icmp_sock = socket(AF_INET, SOCK_RAW, IPPROTO_ICMP);
	socket_errno = errno;
	disable_capability_raw();
	source.sin_family = AF_INET;
	preload = 1;

	//根据ping的选项来设置
	while ((ch = getopt(argc, argv, COMMON_OPTSTR "bRT:")) != EOF) {
		switch(ch) {
		case 'b':...
		case 'Q':...
		case 'R':...
		case 'T':...
		case 'I':...
		case 'M':...
		case 'V':
			printf("ping utility, iputils-%s\n", SNAPSHOT);
			exit(0);
		//如果是一般选项,则交给common_option函数处理
		COMMON_OPTIONS
			common_options(ch);
			break;
		default:
			usage();
		}
	}
	argc -= optind; //处理完选项参数,参数个数减少
	argv += optind; //为获取下个参数,参数指针增加
        //如果后面没参数了,打印用法(usage)
	if (argc == 0)
		usage();
	//参数个数大于1,根据选项进行设置,跳过
	if (argc > 1) {...
	}
        // 定义目标
	while (argc > 0) {
		//获取输入的目标地址
		target = *argv;
		memset((char *)&whereto, 0, sizeof(whereto));
		whereto.sin_family = AF_INET;
		if (inet_aton(target, &whereto.sin_addr) == 1) {
			hostname = target;
			if (argc == 1)
				options |= F_NUMERIC;
		} else {
			char *idn;
			//通过域名获取ip地址
			hp = gethostbyname2(idn, AF_INET);
			if (!hp) {
				fprintf(stderr, "ping: unknown host %s\n", target);
				exit(2);
			}
                        hostname = hnamebuf;
		}
		if (argc > 1)
			route[nroute++] = whereto.sin_addr.s_addr;
		argc--;
		argv++;
    }
    // 判断是否是广播地址,并对目标IP尝试连接
    if (source.sin_addr.s_addr == 0) {
	socklen_t alen;
	struct sockaddr_in dst = whereto;
        int probe_fd = socket(AF_INET, SOCK_DGRAM, 0);
	if (probe_fd < 0) {
		perror("socket");
		exit(2);
        }
        close(probe_fd);
    } while (0);

     // 如果目标ip地址为0,则赋值为127.0.0.1,本地回环地址
    if (whereto.sin_addr.s_addr == 0)
	whereto.sin_addr.s_addr = source.sin_addr.s_addr;
    // icmp套接字创建失败
    if (icmp_sock < 0) {
		errno = socket_errno;
		perror("ping: icmp open socket");
		exit(2);
    }
    // -I选择的设置,跳过
    if (device) {....
    }
    // -b选项的设置,跳过
    if (broadcast_pings || IN_MULTICAST(ntohl(whereto.sin_addr.s_addr))) {...
    }
    // -M选项的设置,跳过
    if (pmtudisc >= 0) {...
    }
    // -I选项的设置,跳过
    if ((options&F_STRICTSOURCE) && bind(icmp_sock, (struct sockaddr*)&source, sizeof(source)) == -1) {
    }
    // 其他一些选项的设置,跳过
    ...
    
    // 设置套接字接受和发送缓冲区的大小
    hold = datalen + 8;
    hold += ((hold+511)/512)*(optlen + 20 + 16 + 64 + 160);
    sock_setbufs(icmp_sock, hold);
    
    // 以下就是ping的过程中我们能看到的打印信息了
    // 如 PING baidu.com (39.156.69.79)
    printf("PING %s (%s) ", hostname, inet_ntoa(whereto.sin_addr));
    if (device || (options&F_STRICTSOURCE))
	printf("from %s %s: ", inet_ntoa(source.sin_addr), device ?: "");
    // 56(84) bytes of data.
    // datalen默认是(64-8)= 56
    printf("%d(%d) bytes of data.\n", datalen, datalen+8+optlen+20);
    
    // 重点1
    setup(icmp_sock);
    // 重点2
    main_loop(icmp_sock, packet, packlen);
}

5、setup函数

void setup(int icmp_sock)
{
    ....
    //以上为选项设置 跳过
    //获取进程ID,识别包要用
    ident = htons(getpid() & 0xFFFF);
    
    set_signal(SIGINT, sigexit);
    set_signal(SIGALRM, sigexit);
    set_signal(SIGQUIT, sigstatus);

    sigemptyset(&sset);
    sigprocmask(SIG_SETMASK, &sset, NULL);

    gettimeofday(&start_time, NULL);

    if (deadline) {
	struct itimerval it;

	it.it_interval.tv_sec = 0;
	it.it_interval.tv_usec = 0;
	it.it_value.tv_sec = deadline;
	it.it_value.tv_usec = 0;
	setitimer(ITIMER_REAL, &it, NULL);
    }

    if (isatty(STDOUT_FILENO)) {
	struct winsize w;

	if (ioctl(STDOUT_FILENO, TIOCGWINSZ, &w) != -1) {
		if (w.ws_col > 0)
			screen_width = w.ws_col;
	}
    }
}

6、main_loop函数

main_loop里面是个死循环,根据时间间隔发包->收包->解析包->发包...

void main_loop(int icmp_sock, __u8 *packet, int packlen)
{
	char addrbuf[128];
	char ans_data[4096];
	struct iovec iov;
	struct msghdr msg;
	struct cmsghdr *c;
	int cc;
	int next;
	int polling;

	iov.iov_base = (char *)packet;

	for (;;) {
		/* 检查退出情况 */
		if (exiting)
			break;
		if (npackets && nreceived + nerrors >= npackets)
			break;
		if (deadline && nerrors)
			break;
		/* 检查状态并作出回应。status_snapshot在setup时被修改过
                 * 丢包、拒收或超时等情况 */
		if (status_snapshot)
			status();

		/* 发包 */
		do {
			next = pinger();
			next = schedule_exit(next);
		} while (next <= 0);

		/* "next"如果为正,则为发下个probe的时间
		 * 如果 next<=0 则表示现在尽快发出 */

		/* Technical part. Looks wicked. Could be dropped,
		 * if everyone used the newest kernel. :-)
		 * Its purpose is:
		 * 1. Provide intervals less than resolution of scheduler.
		 *    Solution: spinning.
		 * 2. Avoid use of poll(), when recvmsg() can provide
		 *    timed waiting (SO_RCVTIMEO). */
		polling = 0;
                // 控制发送时间间隔
		if ((options & (F_ADAPTIVE|F_FLOOD_POLL)) || next<SCHINT(interval)) {
			int recv_expected = in_flight();

			/* If we are here, recvmsg() is unable to wait for
			 * required timeout. */
			if (1000 % HZ == 0 ? next <= 1000 / HZ : (next < INT_MAX / HZ && next * HZ <= 1000)) {
				/* Very short timeout... So, if we wait for
				 * something, we sleep for MININTERVAL.
				 * Otherwise, spin! */
				if (recv_expected) {
					next = MININTERVAL;
				} else {
					next = 0;
					/* When spinning, no reasons to poll.
					 * Use nonblocking recvmsg() instead. */
					polling = MSG_DONTWAIT;
					/* But yield yet. */
					sched_yield();
				}
			}

			if (!polling &&
			    ((options & (F_ADAPTIVE|F_FLOOD_POLL)) || interval)) {
				struct pollfd pset;
				pset.fd = icmp_sock;
				pset.events = POLLIN|POLLERR;
				pset.revents = 0;
				if (poll(&pset, 1, next) < 1 ||
				    !(pset.revents&(POLLIN|POLLERR)))
					continue;
				polling = MSG_DONTWAIT;
			}
		}
                
                // 接收ICMP回应包
		for (;;) {
			struct timeval *recv_timep = NULL;
			struct timeval recv_time;
			int not_ours = 0; /* Raw socket can receive messages
					   * destined to other running pings. */
            
			iov.iov_len = packlen;
			memset(&msg, 0, sizeof(msg));
		        // msg是msghdr类型全局变量,msghdr结构的定义见后
                        msg.msg_name = addrbuf;
			msg.msg_namelen = sizeof(addrbuf);
			msg.msg_iov = &iov;
			msg.msg_iovlen = 1;
			msg.msg_control = ans_data;
			msg.msg_controllen = sizeof(ans_data);

			cc = recvmsg(icmp_sock, &msg, polling); //收包
			polling = MSG_DONTWAIT;
                        
                        // 如果接收失败
			if (cc < 0) {
				if (errno == EAGAIN || errno == EINTR)
					break;
				if (!receive_error_msg()) {
					if (errno) {
						perror("ping: recvmsg");
						break;
					}
					not_ours = 1;
				}
			} else {

#ifdef SO_TIMESTAMP
				for (c = CMSG_FIRSTHDR(&msg); c; c = CMSG_NXTHDR(&msg, c)) {
					if (c->cmsg_level != SOL_SOCKET ||
					    c->cmsg_type != SO_TIMESTAMP)
						continue;
					if (c->cmsg_len < CMSG_LEN(sizeof(struct timeval)))
						continue;
					recv_timep = (struct timeval*)CMSG_DATA(c);
				}
#endif

				if ((options&F_LATENCY) || recv_timep == NULL) {
					if ((options&F_LATENCY) ||
					    ioctl(icmp_sock, SIOCGSTAMP, &recv_time))
						gettimeofday(&recv_time, NULL);
					recv_timep = &recv_time;
				}
                                // 解析收到的包
				not_ours = parse_reply(&msg, cc, addrbuf, recv_timep);
			}

			/* See? ... someone runs another ping on this host. */
			if (not_ours)
				install_filter();

			/* If nothing is in flight, "break" returns us to pinger. */
			if (in_flight() == 0)
				break;

			/* Otherwise, try to recvmsg() again. recvmsg()
			 * is nonblocking after the first iteration, so that
			 * if nothing is queued, it will receive EAGAIN
			 * and return to pinger. */
		}
	}
	finish();
}

6、pinger函数

组成并传送一个ICMP ECHO请求包。
ID是UNIX进程的ID,sequence number是一个递增的整数。
data段的头8个字节装UNIX的时间戳,用来计算往返时间。
具体装包发包是由send_probe函数实现的。

int pinger(void)
{
	static int oom_count;
	static int tokens;
	int i;

	/* 如果发够了就随机返回一个正数 */
	if (exiting || (npackets && ntransmitted >= npackets && !deadline))
		return 1000;

	/* Check that packets < rate*time + preload */
	if (cur_time.tv_sec == 0) {
		gettimeofday(&cur_time, NULL);
		tokens = interval*(preload-1);
	} else {
		long ntokens;
		struct timeval tv;

		gettimeofday(&tv, NULL);
		ntokens = (tv.tv_sec - cur_time.tv_sec)*1000 +
			(tv.tv_usec-cur_time.tv_usec)/1000;
		if (!interval) {
			/* Case of unlimited flood is special;
			 * if we see no reply, they are limited to 100pps */
			if (ntokens < MININTERVAL && in_flight() >= preload)
				return MININTERVAL-ntokens;
		}
		ntokens += tokens;
		if (ntokens > interval*preload)
			ntokens = interval*preload;
		if (ntokens < interval)
			return interval - ntokens;

		cur_time = tv;
		tokens = ntokens - interval;
	}

	if (options & F_OUTSTANDING) {
		if (ntransmitted > 0 && !rcvd_test(ntransmitted)) {
			print_timestamp();
			printf("no answer yet for icmp_seq=%lu\n", (ntransmitted % MAX_DUP_CHK));
			fflush(stdout);
		}
	}

resend:
	i = send_probe();    // 处理工作做完,发包
        // 发送成功
	if (i == 0) {
		oom_count = 0;
		advance_ntransmitted();
		if (!(options & F_QUIET) && (options & F_FLOOD)) {
			/* Very silly, but without this output with
			 * high preload or pipe size is very confusing. */
			if ((preload < screen_width && pipesize < screen_width) ||
			    in_flight() < screen_width)
				write_stdout(".", 1);
		}
		return interval - tokens;
	}

	/* 发送失败,处理各种错误 */
	if (i > 0) {
		/* Apparently, it is some fatal bug. */
		abort();
	} else if (errno == ENOBUFS || errno == ENOMEM) {
		int nores_interval;

		/* Device queue overflow or OOM. Packet is not sent. */
		tokens = 0;
		/* Slowdown. This works only in adaptive mode (option -A) */
		rtt_addend += (rtt < 8*50000 ? rtt/8 : 50000);
		if (options&F_ADAPTIVE)
			update_interval();
		nores_interval = SCHINT(interval/2);
		if (nores_interval > 500)
			nores_interval = 500;
		oom_count++;
		if (oom_count*nores_interval < lingertime)
			return nores_interval;
		i = 0;
		/* Fall to hard error. It is to avoid complete deadlock
		 * on stuck output device even when dealine was not requested.
		 * Expected timings are screwed up in any case, but we will
		 * exit some day. :-) */
	} else if (errno == EAGAIN) {
		/* Socket buffer is full. */
		tokens += interval;
		return MININTERVAL;
	} else {
		if ((i=receive_error_msg()) > 0) {
			/* An ICMP error arrived. */
			tokens += interval;
			return MININTERVAL;
		}
		/* Compatibility with old linuces. */
		if (i == 0 && confirm_flag && errno == EINVAL) {
			confirm_flag = 0;
			errno = 0;
		}
		if (!errno)
			goto resend;
	}

	/* Hard local error. Pretend we sent packet. */
	advance_ntransmitted();

	if (i == 0 && !(options & F_QUIET)) {
		if (options & F_FLOOD)
			write_stdout("E", 1);
		else
			perror("ping: sendmsg");
	}
	tokens = 0;
	return SCHINT(interval);
}

7、send_probe函数

int send_probe()
{
        // ICMP报文头部
	struct icmphdr *icp;
	int cc;
	int i;

	icp = (struct icmphdr *)outpack;
	icp->type = ICMP_ECHO;    // 请求类型:request
	icp->code = 0;
	icp->checksum = 0;            //校验和
	icp->un.echo.sequence = htons(ntransmitted+1);  //
	icp->un.echo.id = ident;     // 进程ID

	rcvd_clear(ntransmitted+1);

	if (timing) {
		if (options&F_LATENCY) {
			struct timeval tmp_tv;
			gettimeofday(&tmp_tv, NULL);
			memcpy(icp+1, &tmp_tv, sizeof(tmp_tv));
		} else {
			memset(icp+1, 0, sizeof(struct timeval));
		}
	}

	cc = datalen + 8;			/* skips ICMP portion */

	/* compute ICMP checksum here */
	icp->checksum = in_cksum((u_short *)icp, cc, 0);

	if (timing && !(options&F_LATENCY)) {
		struct timeval tmp_tv;
		gettimeofday(&tmp_tv, NULL);
		memcpy(icp+1, &tmp_tv, sizeof(tmp_tv));
		icp->checksum = in_cksum((u_short *)&tmp_tv, sizeof(tmp_tv), ~icp->checksum);
	}
        
        // 发出去之前得把包封装成msghdr类型
	do {
		static struct iovec iov = {outpack, 0};
		static struct msghdr m = { &whereto, sizeof(whereto),
						   &iov, 1, &cmsg, 0, 0 };
		m.msg_controllen = cmsg_len;
		iov.iov_len = cc;

		i = sendmsg(icmp_sock, &m, confirm);  // 在这里发包
		confirm = 0;
	} while (0);

	return (cc == i ? 0 : i);
}

8、parse_reply函数

打印收到的ICMP包,就是一个拆包的过程

int
parse_reply(struct msghdr *msg, int cc, void *addr, struct timeval *tv)
{
	struct sockaddr_in *from = addr;
	__u8 *buf = msg->msg_iov->iov_base;
	struct icmphdr *icp;
	struct iphdr *ip;
	int hlen;
	int csfailed;

	/* 检查IP包头部 */
	ip = (struct iphdr *)buf;
	hlen = ip->ihl*4; // IP包头长度
	if (cc < hlen + 8 || ip->ihl < 5) {
		if (options & F_VERBOSE)
			fprintf(stderr, "ping: packet too short (%d bytes) from %s\n", cc,
				pr_addr(from->sin_addr.s_addr));
		return 1;
	}

	/* ICMP包部分 */
	cc -= hlen;
        //指针往右走hlen就是ICMP包的起始
	icp = (struct icmphdr *)(buf + hlen);    
        //检查校验和
	csfailed = in_cksum((u_short *)icp, cc, 0);
        // 收到ICMP包如果是回应类型
	if (icp->type == ICMP_ECHOREPLY) {
                // 先对比进程ID,确定是自己要的包
		if (icp->un.echo.id != ident)
			return 1;			/* 'Twas not our ECHO */
                // 计算来回的时间
		if (gather_statistics((__u8*)icp, sizeof(*icp), cc,
				      ntohs(icp->un.echo.sequence),
				      ip->ttl, 0, tv, pr_addr(from->sin_addr.s_addr),
				      pr_echo_reply)) {
			fflush(stdout);
			return 0;    // 回到main_loop
		}
	} else {
                /* 当收到一个重定向或源抑制包时进入
		/* We fall here when a redirect or source quench arrived.
		 * Also this branch processes icmp errors, when IP_RECVERR
		 * is broken. */

		switch (icp->type) {
		case ICMP_ECHO:    // 收到一个ICMP请求包
			/* MUST NOT */
			return 1;
		case ICMP_SOURCE_QUENCH:    // 源抑制
		case ICMP_REDIRECT:                   // 重定向
		case ICMP_DEST_UNREACH:        // 目标不可达
		case ICMP_TIME_EXCEEDED:       // 超时
		case ICMP_PARAMETERPROB:    // 参数错误   
			{
				struct iphdr * iph = (struct  iphdr *)(&icp[1]);
				struct icmphdr *icp1 = (struct icmphdr*)((unsigned char *)iph + iph->ihl*4);
				int error_pkt;
				if (cc < 8+sizeof(struct iphdr)+8 ||
				    cc < 8+iph->ihl*4+8)
					return 1;
				if (icp1->type != ICMP_ECHO ||
				    iph->daddr != whereto.sin_addr.s_addr ||
				    icp1->un.echo.id != ident)
					return 1;
				error_pkt = (icp->type != ICMP_REDIRECT &&
					     icp->type != ICMP_SOURCE_QUENCH);
				if (error_pkt) {
					acknowledge(ntohs(icp1->un.echo.sequence));
					return 0;
				}
				nerrors+=error_pkt;
	        // 根据选项操作
                ...        
                }
	return 0;
}

9、常用网络编程函数:

  1. socket函数:用来创建套接字
    • 函数原型 int socket(int domain, int type, int protocol);
    • domain表示套接字要使用的协议簇
      • AF_UNIX(本机通信)
      • AF_INET(TCP/IP – IPv4)
      • AF_INET6(TCP/IP – IPv6)
    • type表示套接字类型
      • SOCK_STREAM(TCP流)
      • SOCK_DGRAM(UDP数据报)
      • SOCK_RAW(原始套接字)
    • protocol用来确定协议种类,一般为0
  2. htons函数:将端口号由主机字节序转换为网络字节序的整数值
    • 如 mysock.sin_port = htons(80)
  3. inet_addr函数:将一个IP字符串转化为一个网络字节序的整数值
    • 如 mysock.sin_addr.s_addr = inet_addr("192.168.1.0")
  4. recvmsg\ sendmsg函数
    • ssize_t recvmsg ( int sockfd , struct msghdr * msg , int flags )
    • ssize_t sendmsg ( int sockfd , struct msghdr * msg , int flags ) ;
    • sockfd - 套接字描述符
    • msg - 消息头部
    • flags - 套接口设置标识
  5. msghdr结构体
struct msghdr  {
    void  * msg_name ;   / *  消息的协议地址  * /
    socklen_t msg_namelen ;   / *  地址的长度  * /
    struct iovec  * msg_iov ;   / *  多io缓冲区的地址  * /
    int  msg_iovlen ;   / *  缓冲区的个数  * /
    void  * msg_control ;   / *  辅助数据的地址  * /
    socklen_t msg_controllen ;   / *  辅助数据的长度  * /
    int  msg_flags ;   / *  接收消息的标识  * /
} ;

10、感想心得

  1. 每个命令都有很多可选参数,第一遍读源码时去深究每个参数的功能实现是很难的,很容易陷入层层递进的函数,最后放弃。应该先把实现框架搞懂。
  2. 主要功能的实现依靠icmp包的封装,icmp包的解析,sendmsg和recvmsg两个函数。复杂之处在于
    • 各个参数的不同设置
    • 发包时间间隔的设置,涉及进程信号处理
  3. 整理一下parse_reply即收到包的解析
    • 首先解析IP包的头部,解析完指针往前走
    • 读取ICMP包的type段、code段判断是否是reply包
    • 检查校验和
    • 比较标识符(进程ID)
    • 根据时间戳计算来回时间
  4. 今后还需要加深对UNIX网络编程的学习。由于很多定义和函数用法不熟悉,浪费了很多时间。
posted @ 2019-11-27 22:04  WZaihua  阅读(4977)  评论(0编辑  收藏  举报