HDU1102--Constructing Roads

Constructing Roads
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 10598 Accepted Submission(s): 3942


Problem Description
There are N villages, which are numbered from 1 to N, and you should build some roads such that every two villages can connect to each other. We say two village A and B are connected, if and only if there is a road between A and B, or there exists a village C such that there is a road between A and C, and C and B are connected.

We know that there are already some roads between some villages and your job is the build some roads such that all the villages are connect and the length of all the roads built is minimum.


Input
The first line is an integer N (3 <= N <= 100), which is the number of villages. Then come N lines, the i-th of which contains N integers, and the j-th of these N integers is the distance (the distance should be an integer within [1, 1000]) between village i and village j.

Then there is an integer Q (0 <= Q <= N * (N + 1) / 2). Then come Q lines, each line contains two integers a and b (1 <= a < b <= N), which means the road between village a and village b has been built.


Output
You should output a line contains an integer, which is the length of all the roads to be built such that all the villages are connected, and this value is minimum.


Sample Input
3
0 990 692
990 0 179
692 179 0
1
1 2


Sample Output
179


Source
kicc


Recommend
Eddy

简单最小生成树

  1 #include<cstdio>
  2 #include<cstring>
  3 #include<algorithm>
  4 #include<iostream>
  5 #include<cmath>
  6 #include<map>
  7 using namespace std;
  8 
  9 int parent[5001];
 10 int n;
 11 int edge[1001][1001];
 12 
 13 struct node
 14 {
 15     int u,v;
 16     int w;
 17 }point[5001];
 18 
 19 bool cmp(node a,node b)
 20 {
 21     return a.w<b.w;
 22 }
 23 
 24 void Ufset()
 25 {
 26     int i;
 27     for(i=1;i<=5000;i++)
 28     {
 29         parent[i]=-1;
 30     }
 31 }
 32 
 33 int Find(int x)
 34 {
 35     int s;
 36     for(s=x;parent[s]>0;s=parent[s]){}
 37     while(s!=x)
 38     {
 39         int temp=parent[x];
 40         parent[x]=s;
 41         x=temp;
 42     }
 43     return s;
 44 }
 45 
 46 void Union(int R1,int R2)
 47 {
 48     int r1=Find(R1),r2=Find(R2);
 49     int temp=parent[r1]+parent[r2];
 50     if(parent[r1]>parent[r2])
 51     {
 52         parent[r1]=r2;
 53         parent[r2]=temp;
 54     }
 55     else
 56     {
 57         parent[r1]=temp;
 58         parent[r2]=r1;
 59     }
 60 }
 61 
 62 int kruskal(int x)
 63 {
 64     int sum=0;
 65     int i;
 66     for(i=1;i<x;i++)
 67     {
 68         int u=point[i].u,v=point[i].v;
 69         if(Find(u)!=Find(v))
 70         {
 71             Union(u,v);
 72             sum+=point[i].w;
 73         }
 74     }
 75     return sum;
 76 }
 77 
 78 int main()
 79 {
 80     while(scanf("%d",&n)!=EOF)
 81     {
 82         memset(edge,0,sizeof(edge));
 83         Ufset();
 84         int i,j;
 85         int cnt=1;
 86         for(i=1;i<=n;i++)
 87         {
 88             for(j=1;j<=n;j++)
 89             {
 90                 scanf("%d",&edge[i][j]);
 91                 if(j>i)
 92                 {
 93                     point[cnt].u=i;
 94                     point[cnt].v=j;
 95                     point[cnt++].w=edge[i][j];
 96                 }
 97             }
 98         }
 99         sort(point+1,point+cnt,cmp);
100         int q;
101         scanf("%d",&q);
102         for(i=1;i<=q;i++)
103         {
104             int u,v;
105             scanf("%d%d",&u,&v);
106             if(Find(u)!=Find(v))
107             {
108                 Union(u,v);
109             }
110         }
111         int ans=kruskal(cnt);
112         printf("%d\n",ans);
113     }
114     return 0;
115 }
View Code

 

 

posted on 2013-07-18 23:59  张狂不年轻°  阅读(207)  评论(0)    收藏  举报