HDU 1016(Leftmost Digit)N^N 最左边的数
Leftmost Digit
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 10400 Accepted Submission(s): 3957
Problem Description
Given a positive integer N, you should output the leftmost digit of N^N.
Input
The
input contains several test cases. The first line of the input is a
single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Output
For each test case, you should output the leftmost digit of N^N.
Sample Input
2
3
4
Sample Output
2
2
Hint
In the first case, 3 * 3 * 3 = 27, so the leftmost digit is 2.
In the second case, 4 * 4 * 4 * 4 = 256, so the leftmost digit is 2.
Author
Ignatius.L
#include<cstdio> #include<cmath> #include<algorithm> #include<iostream> using namespace std; int main() { int t; scanf("%d",&t); while(t--) { __int64 n; scanf("%I64d",&n); double tem=n*log10(1.0*n)-(__int64)(n*log10(1.0*n)); double ans=pow(10.0,tem); printf("%d\n",(int)ans); } return 0; }
感慨一下log10()非常好用
10^(a+b)=n^n
n*log(n)=a+b
b=n*log10(n)-(__int64)(n*log10(n))
10^b 从而表示第一位
n=87455时,a=4,b=0.941784644.
10^a=10000.10^b=8.7455
从别人处引用而来
浙公网安备 33010602011771号