Apache Hudi 介绍与应用

Apache Hudi

Apache Hudi 在基于 HDFS/S3 数据存储之上,提供了两种流原语:

  1. 插入更新
  2. 增量拉取

一般来说,我们会将大量数据存储到HDFS/S3,新数据增量写入,而旧数据鲜有改动,特别是在经过数据清洗,放入数据仓库的场景。而且在数据仓库如 hive中,对于update的支持非常有限,计算昂贵。另一方面,若是有仅对某段时间内新增数据进行分析的场景,则hive、presto、hbase等也未提供原生方式,而是需要根据时间戳进行过滤分析。

在此需求下,Hudi可以提供这两种需求的实现。第一个是对record级别的更新,另一个是仅对增量数据的查询。且Hudi提供了对Hive、presto、Spark的支持,可以直接使用这些组件对Hudi管理的数据进行查询。

 

存储类型

我们看一下 Hudi 的两种存储类型:

  1. 写时复制(copy on write):仅使用列式文件(parquet)存储数据。在写入/更新数据时,直接同步合并原文件,生成新版本的基文件(需要重写整个列数据文件,即使只有一个字节的新数据被提交)。此存储类型下,写入数据非常昂贵,而读取的成本没有增加,所以适合频繁读的工作负载,因为数据集的最新版本在列式文件中始终可用,以进行高效的查询。
  2. 读时合并(merge on read):使用列式(parquet)与行式(avro)文件组合,进行数据存储。在更新记录时,更新到增量文件中(avro),然后进行异步(或同步)的compaction,创建列式文件(parquet)的新版本。此存储类型适合频繁写的工作负载,因为新记录是以appending 的模式写入增量文件中。但是在读取数据集时,需要将增量文件与旧文件进行合并,生成列式文件。

 

视图

在了解这两种存储类型后,我们再看一下Hudi支持的存储数据的视图(也就是查询模式):

  1. 读优化视图(Read Optimized view):直接query 基文件(数据集的最新快照),也就是列式文件(如parquet)。相较于非Hudi列式数据集,有相同的列式查询性能
  2. 增量视图(Incremental View):仅query新写入数据集的文件,也就是指定一个commit/compaction,query此之后的新数据。
  3. 实时视图(Real-time View):query最新基文件与增量文件。此视图通过将最新的基文件(parquet)与增量文件(avro)进行动态合并,然后进行query。可以提供近实时的数据(会有几分钟的延迟)

在以上3种视图中,“读优化视图”与“增量视图”均可在“写时复制”与“读时合并”的存储类型下使用。而“实时视图“仅能在”读时合并“模式下使用。

存储类型

支持的视图

写时复制

读优化 + 增量

读时合并

读优化 + 增量 + 近实时

 

时间轴

最后介绍一下 Hudi 的核心 —— 时间轴。Hudi 会维护一个时间轴,在每次执行操作时(如写入、删除、合并等),均会带有一个时间戳。通过时间轴,可以实现在仅查询某个时间点之后成功提交的数据,或是仅查询某个时间点之前的数据。这样可以避免扫描更大的时间范围,并非常高效地只消费更改过的文件(例如在某个时间点提交了更改操作后,仅query某个时间点之前的数据,则仍可以query修改前的数据)。

 

使用案例

下面我们尝试使用Hudi API 进行读写。

 

写入数据

首先准备数据集,部分条目为:

1535908|Big Run|Stream|WV|38.6370428|-80.8595469|794

875609|Constable Hook|Cape|NJ|40.657881|-74.0990309|7

1217998|Gooseberry Island|Island|RI|41.4534361|-71.3253284|10

26603|Boone Moore Spring|Spring|AZ|34.0895692|-111.410065|3681

1506738|Missouri Flat|Flat|WA|46.7634987|-117.0346113|2605

 

启动spark-shell,并指定hudi jar包:

spark-shell --conf "spark.serializer=org.apache.spark.serializer.KryoSerializer" --conf "spark.sql.hive.convertMetastoreParquet=false" --jars /usr/lib/hudi/hudi-spark-bundle.jar,/usr/lib/spark/external/lib/spark-avro.jar

 

加载指定包:

import scala.collection.JavaConversions._
import org.apache.spark.sql.SaveMode._
import org.apache.hudi.DataSourceReadOptions._
import org.apache.hudi.DataSourceWriteOptions._
import org.apache.hudi.config.HoodieWriteConfig._
import org.apache.hudi.hive.MultiPartKeysValueExtractor

 

指定创建的Hudi表名与路径:

val tableName = "hudi_table"
val basePath = "s3://xxxx/xxx"

 

构造 DataFrame:

val lineRDD = sc.textFile("features.txt").map(_.split("\\|")).filter(_.length > 6)
case class Record(id:Int, name:String, c_class:String, state:String, latitude:Float, longitude:String, elevation:Int)
val RecordRDD = lineRDD.map(x=>Record(x(0).toInt, x(1), x(2), x(3), x(4).toFloat, x(5), x(6).toInt))
val featureDF=RecordRDD.toDF

 

插入数据到 Hudi(以及Hive):

featureDF.write.format("org.apache.hudi").
  option(RECORDKEY_FIELD_OPT_KEY, "c_class").
  option(PARTITIONPATH_FIELD_OPT_KEY, "state").
  option(PRECOMBINE_FIELD_OPT_KEY, "id").
  option(TABLE_NAME, tableName).
  option(HIVE_SYNC_ENABLED_OPT_KEY, "true").
  option(HIVE_TABLE_OPT_KEY, "hivehudi").
  option(HIVE_PARTITION_FIELDS_OPT_KEY, "state").
  option(HIVE_PARTITION_EXTRACTOR_CLASS_OPT_KEY, classOf[MultiPartKeysValueExtractor].getName).
  mode(Overwrite).
  save(basePath);

 

我们可以看到目录结构类似于 Hive:

hudi/hudi_table/AR/44bfae35-056b-4bcd-8970-5f1271c3845d-0_18-215-89206_20191121100011.parquet

hudi/hudi_table/CA/2a591ee9-afa4-48d9-bd16-63376a1b8e06-0_38-215-89226_20191121100011.parquet

hudi/hudi_table/CT/911510f9-0655-405f-afad-be9c15429e81-0_46-215-89234_20191121100011.parquet

表名为hudi_table,分区键为 state,真正存储数据的文件为parquet。

 

查询数据

首先载入数据格式:

val toViewDF = spark.read.format("org.apache.hudi").load(basePath + "/*/*")

 

我们在上面插入数据的时候,同时创建了 Hive 表,所以有以下两种方式做查询:

  1. 直接查询 Hive 表:

  spark.sql("select name from hivehudi where c_class='Summit'").show()

  +--------------------+

  |                name|

  +--------------------+

  |           High Knob|

  | White Rock Mountain|

  |      Open Mine Hill|

       …

      

       2. 使用临时表:

  toViewDF.registerTempTable("hudi_ro_table")

  spark.sql("select id,name from hudi_ro_table where c_class='Stream'").show()

  +-------+--------------------+

  |     id|                name|

  +-------+--------------------+

  | 539931|   Tiger Point Gully|

  | 871801|           Dry Brook|

  | 847407|      McClusky Creek|

  | 637687|          Shaw Drain|

  | 749747|        Duncan Creek|

  |1502779|         Brushy Lick|

  …

 

更新数据

首先我们看一条数据:

spark.sql("select id,name from hudi_ro_table where c_class='Stream' and id=539931").show()

+------+-----------------+

|    id|             name|

+------+-----------------+

|539931|Tiger Point Gully|

 

然后更新此数据(更新的数据存储在一个新的源文件中):

val updateRDD = sc.textFile("update.txt").map(_.split("\\|")).filter(_.length>6)
val updateDF = updateRDD.map(x=>Record(x(0).toInt, x(1), x(2), x(3), x(4).toFloat, x(5), x(6).toInt)).toDF
updateDF.write.format("org.apache.hudi").
  option(RECORDKEY_FIELD_OPT_KEY, "c_class").
  option(PARTITIONPATH_FIELD_OPT_KEY, "state").
  option(PRECOMBINE_FIELD_OPT_KEY, "id").
  option(TABLE_NAME, tableName).
  option(HIVE_SYNC_ENABLED_OPT_KEY, "true").
  option(HIVE_TABLE_OPT_KEY, "hivehudi").
  option(HIVE_PARTITION_FIELDS_OPT_KEY, "state").
  option(HIVE_PARTITION_EXTRACTOR_CLASS_OPT_KEY, classOf[MultiPartKeysValueExtractor].getName).
  mode(Append).
  save(basePath);

 

可以看到我们这里使用的模式由Overwrite 改为了 Append,也就是追加的模式,其余的基本不变。我们首先分别看一下 hive 表与 hudi 表中的数据变化。

 

Hive 表中:

spark.sql("select id,name from hivehudi where c_class='Stream' and id=539931").show()

+------+-----------------+

|    id|             name|

+------+-----------------+

|539931|Tiger Point Gully|

|539931|     Tiger-update|

+------+-----------------+

 

Hudi 表中:

val appViewDF = spark.read.format("org.apache.hudi").load(basePath + "/*/*")
appViewDF.registerTempTable("hudi_update_table")
spark.sql("select id,name from hudi_update_table where c_class='Stream' and id=539931").show()

+------+-----------------+

|    id|             name|

+------+-----------------+

|539931|Tiger Point Gully|

|539931|     Tiger-update|

+------+-----------------+

 

可以看到均可以查到更新后的数据。

对数据执行 select * 加上过滤条件:

 

 

可以看到表中有2个比较有意思的字段,分别为:_hoodie_commit_time, _hoodie_commit_seqno

上文我们提到过 Hudi 有一个核心为时间轴,每次执行一个commit时,都会生成一个时间戳。这里 _hoodie_commit_time 即记录了commit 的时间戳。进一步的,Hudi 便是基于此实现了增量查询。

下面我们尝试一下增量查询:

// 获取 commit 时间戳
val commits = spark.sql("select distinct(_hoodie_commit_time) as commitTime from hudi_update_table order by commitTime").map(k => k.getString(0)).take(3)

// 设置起始时间戳为上次时间戳
val beginTime = commits(commits.length - 2)

// 增量查询
val incViewDF = spark.
  read.
  format("org.apache.hudi").
  option(VIEW_TYPE_OPT_KEY, VIEW_TYPE_INCREMENTAL_OPT_VAL).
  option(BEGIN_INSTANTTIME_OPT_KEY, beginTime).
  load(basePath);
incViewDF.registerTempTable("hudi_incr_table") spark.sql("select * from hudi_incr_table where c_class='Stream' and id=539931").show()

 

这里我们使用增量查询的选项 VIEW_TYPE_INCREMENTAL_OPT_VAL,以及设置了时间戳的起始时间。查询结果为:

 

可以看到查询到的数据仅为上次commit 后的数据。

 

当然,我们也可以指定时间段内的数据进行查询,指定下面选项即可:

    option(BEGIN_INSTANTTIME_OPT_KEY, beginTime).
    option(END_INSTANTTIME_OPT_KEY, endTime).

 

Hudi CLI

最后我们看下一下 Hudi CLI

// 启动 hudi cli:

/usr/lib/hudi/cli/bin/hudi-cli.sh

// 连接hudi 数据表

connect --path s3://xxxx/hudi/hudi_table

 

接下来我们可以查看提交过的 commit:

 

 

 

甚至回滚 commit:

commit rollback --commit 20191122073858

 

回滚后再次对 hive 表执行查询:

spark.sql("select id,name from hivehudi where c_class='Stream' and id=539931").show()

+------+-----------------+

|    id|             name|

+------+-----------------+

|539931|Tiger Point Gully|

+------+-----------------+

可以看到之前更新的数据已经被删除。

 

在 Hudi  Cli 下,我们也可以创建表(create)、列出commit时文件级别的信息(commit showfiles)等。更多 Hudi cli 的用法,可以在 Hudi Cli 下输入 help 获取更多信息。

 

References:

Apache Hudi 官方介绍:https://hudi.apache.org/index.html

Apache Hudi Quick Start:https://hudi.apache.org/quickstart.html

Apache Hudi CLI: https://hudi.apache.org/admin_guide.html

posted @ 2019-11-22 17:39  ZacksTang  阅读(13774)  评论(0编辑  收藏  举报