导航

nyoj 90 整数划分

Posted on 2013-08-12 00:22  勇敢的炮灰  阅读(125)  评论(0)    收藏  举报

点击打开链接

整数划分

时间限制:3000 ms  |  内存限制:65535 KB
难度:3
描述
将正整数n表示成一系列正整数之和:n=n1+n2+…+nk, 
其中n1≥n2≥…≥nk≥1,k≥1。 
正整数n的这种表示称为正整数n的划分。求正整数n的不 
同划分个数。 
例如正整数6有如下11种不同的划分: 
6; 
5+1; 
4+2,4+1+1; 
3+3,3+2+1,3+1+1+1; 
2+2+2,2+2+1+1,2+1+1+1+1; 
1+1+1+1+1+1。 

输入
第一行是测试数据的数目M(1<=M<=10)。以下每行均包含一个整数n(1<=n<=10)。
输出
输出每组测试数据有多少种分法。
样例输入
1
6
样例输出
11

经典动态规划问题,状态描述的方式有很多,我也只是知道其中一种,假设dp( x, y)表示数x最大能分成 y 个数,我们可以想象成 x 个球放在 y 个格子里,那么拆分时有两种情况,第一种是每个盒子里都至少有一个球,那么先把每个格子里放一个球,这样就剩下了x - y个球,那么把剩下的( x - y)个球放在y个盒子里,这就转移到了dp( ( x - y), y)这个状态;  另一种情况就是至少有一个盒子里没有球,这样就把状态转移成了dp( x, y - 1)这个状态;所以最后dp( x, y) = dp(x - y, y) + dp(x, y - 1),这就是转移方程,但是需要注意一个细节,就是如果x - y < y,也就是说当第一种情况下剩下的球的个数小于盒子的总个数,那么dp的值就不存在了,比如把5分成至少6个数,这样本身就不合理,所以这种情况下我们就要比较一下,对于x - y < y的,我们要把方程中的y换成x - y,因为x - y 个球最大就能分成x - y个数

#include<stdio.h>
int main()
{
	int map[11][11] = {0};

	int i , j , k ;
	map[0][0] = 1;
	for(i = 1 ; i < 11 ; i++)
	{
		for(j = 1 ; j <= i ; j++)
		{
			
			if(j > i - j)
				map[i][j] = map[i][j - 1] + map[i - j][i - j];
			else
				map[i][j] = map[i][j - 1] + map[i - j][j];
		}
	}
	scanf("%d" , &i);
	while(i--)
	{
		scanf("%d" , & j);
		printf("%d\n" , map[j][j]);
	}
	return 0;
}