实验二 现代C++编程初体验
任务1:
源代码:
1 #pragma once 2 #include <string> 3 // 类T: 声明 4 class T { 5 // 对象属性、方法 6 public: 7 T(int x = 0, int y = 0); // 普通构造函数 8 T(const T &t); // 复制构造函数 9 T(T &&t); // 移动构造函数 10 ~T(); // 析构函数 11 12 void adjust(int ratio); // 按系数成倍调整数据 13 void display() const; // 以(m1, m2)形式显示T类对象信息 14 15 private: 16 int m1, m2; 17 18 // 类属性、方法 19 public: 20 static int get_cnt(); // 显示当前T类对象总数 21 22 public: 23 static const std::string doc; // 类T的描述信息 24 static const int max_cnt; // 类T对象上限 25 26 private: 27 static int cnt; // 当前T类对象数目 28 29 // 类T友元函数声明 30 friend void func(); 31 }; 32 33 // 普通函数声明 34 void func();
1 #include "T.h" 2 #include <iostream> 3 #include <string> 4 5 // 类T实现 6 7 // static成员数据类外初始化 8 const std::string T::doc{"a simple class sample"}; 9 const int T::max_cnt = 999; 10 int T::cnt = 0; 11 12 // 类方法 13 int T::get_cnt() { 14 return cnt; 15 } 16 17 // 对象方法 18 T::T(int x, int y): m1{x}, m2{y} { 19 ++cnt; 20 std::cout << "T constructor called.\n"; 21 } 22 23 T::T(const T &t): m1{t.m1}, m2{t.m2} { 24 ++cnt; 25 std::cout << "T copy constructor called.\n"; 26 } 27 28 T::T(T &&t): m1{t.m1}, m2{t.m2} { 29 ++cnt; 30 std::cout << "T move constructor called.\n"; 31 } 32 33 T::~T() { 34 --cnt; 35 std::cout << "T destructor called.\n"; 36 } 37 38 void T::adjust(int ratio) { 39 m1 *= ratio; 40 m2 *= ratio; 41 } 42 43 void T::display() const { 44 std::cout << "(" << m1 << ", " << m2 << ")" ; 45 } 46 47 // 普通函数实现 48 void func() { 49 T t5(42); 50 t5.m2 = 2049; 51 std::cout << "t5 = "; t5.display(); std::cout << '\n'; 52 }
1 #include "T.h" 2 #include <iostream> 3 4 void test_T(); 5 6 int main() { 7 std::cout << "test Class T: \n"; 8 test_T(); 9 10 std::cout << "\ntest friend func: \n"; 11 func(); 12 } 13 14 void test_T() { 15 using std::cout; 16 using std::endl; 17 18 cout << "T info: " << T::doc << endl; 19 cout << "T objects'max count: " << T::max_cnt << endl; 20 cout << "T objects'current count: " << T::get_cnt() << endl << endl; 21 22 T t1; 23 cout << "t1 = "; t1.display(); cout << endl; 24 25 T t2(3, 4); 26 cout << "t2 = "; t2.display(); cout << endl; 27 28 T t3(t2); 29 t3.adjust(2); 30 cout << "t3 = "; t3.display(); cout << endl; 31 32 T t4(std::move(t2)); 33 cout << "t4 = "; t4.display(); cout << endl; 34 35 cout << "test: T objects'current count: " << T::get_cnt() << endl; 36 }
运行结果截图:

问题1:

原因:友元函数的声明只是告知编译器该函数是类的友元,但函数本身的定义(或声明)仍需在外部提供。如果去掉 T.h 中的 void func(); 声明,编译器在编译调用 func() 的代码(如 task1.cpp 中的 func(); )时,会因找不到 func() 的声明而报错,提示“未声明的标识符”之类的编译错误。
问题2:
1. line9( T(int x = 0, int y = 0) ;):
功能:普通构造函数,创建 T 类对象时初始化成员变量 m1 和 m2 ,支持默认参数(无参或传参创建对象)。
调用时机:当用 T t1; (无参)、 T t2(3,4); (传参)方式创建对象时调用。
2. line10( T(const T &t) ;):
功能:复制构造函数,用一个已存在的 T 类对象拷贝创建新的 T 类对象,复制成员变量的值。
调用时机:当用已存在的对象初始化新对象时调用,例如 T t3(t2); (直接初始化)、按值传递对象参数、函数返回对象(某些情况)等。
3. line11( T(T &&t) ;):
功能:移动构造函数,用一个临时对象的资源“移动”创建新的 T 类对象,避免不必要的拷贝,提高效率。
调用时机:当用临时对象(如 std::move(t2) 转换后的对象)初始化新对象时调用,例如 T t4(std::move(t2)); 。
4. line12 析构函数( ~T(); ):
功能:析构函数,在 T 类对象生命周期结束时(如离开作用域),释放对象占用的资源(本题中主要是维护静态成员 cnt 的计数)。
调用时机:对象销毁时自动调用,例如局部对象离开作用域、动态分配的对象被 delete 时。
问题三:

int T::get_cnt() 是类的静态成员函数,其实现依赖于类的静态成员 cnt 。静态成员函数的声明必须在类内部( T.h 中 static int get_cnt(); ),而实现可以在类外。如果将 line13-15 ( get_cnt 的实现)剪切到 T.h 末尾,会导致:
1.类的声明和实现混杂;
2.get_cnt 函数内部访问了静态成员 cnt ,而 cnt 的定义在 T.cpp 中,若将 get_cnt 的实现移到 T.h ,会导致链接时找不到 cnt 的定义,出现“未定义的引用”错误。
任务2:
源代码:
1 // 2 #include "Complex.h" 3 #include <iostream> 4 #include <iomanip> 5 #include <complex> 6 7 void test_Complex(); 8 void test_std_complex(); 9 10 int main() { 11 std::cout << "******测试1:自定义类Complex******\n"; 12 test_Complex(); 13 14 std::cout << "\n******测试2:标准库模板类complex******\n"; 15 test_std_complex(); 16 return 0; 17 } 18 19 void test_Complex() { 20 using std::cout; 21 using std::endl; 22 using std::boolalpha; 23 24 cout << "类成员测试:" << endl; 25 cout << Complex::doc << endl << endl; 26 27 cout << "Complex对象测试:" << endl; 28 Complex c1; 29 Complex c2(3, -4); 30 Complex c3(c2); 31 Complex c4 = c2; 32 const Complex c5(3.5); 33 34 cout << "c1 = "; output(c1); cout << endl; 35 cout << "c2 = "; output(c2); cout << endl; 36 cout << "c3 = "; output(c3); cout << endl; 37 cout << "c4 = "; output(c4); cout << endl; 38 cout << "c5.real = " << c5.get_real() 39 << ", c5.imag = " << c5.get_imag() << endl << endl; 40 41 cout << "复数运算测试:" << endl; 42 cout << "abs(c2) = " << abs(c2) << endl; 43 c1.add(c2); 44 cout << "c1 += c2, c1 = "; output(c1); cout << endl; 45 cout << boolalpha; 46 cout << "c1 == c2 : " << is_equal(c1, c2) << endl; 47 cout << "c1 != c2 : " << is_not_equal(c1, c2) << endl; 48 c4 = add(c2, c3); 49 cout << "c4 = c2 + c3, c4 = "; output(c4); cout << endl; 50 } 51 52 void test_std_complex() { 53 using std::cout; 54 using std::endl; 55 using std::boolalpha; 56 57 cout << "std::complex<double>对象测试:" << endl; 58 std::complex<double> c1; 59 std::complex<double> c2(3, -4); 60 std::complex<double> c3(c2); 61 std::complex<double> c4 = c2; 62 const std::complex<double> c5(3.5); 63 64 cout << "c1 = " << c1 << endl; 65 cout << "c2 = " << c2 << endl; 66 cout << "c3 = " << c3 << endl; 67 cout << "c4 = " << c4 << endl; 68 cout << "c5.real = " << c5.real() 69 << ", c5.imag = " << c5.imag() << endl << endl; 70 71 cout << "复数运算测试:" << endl; 72 cout << "abs(c2) = " << abs(c2) << endl; 73 c1 += c2; 74 cout << "c1 += c2, c1 = " << c1 << endl; 75 cout << boolalpha; 76 cout << "c1 == c2 : " << (c1 == c2) << endl; 77 cout << "c1 != c2 : " << (c1 != c2) << endl; 78 c4 = c2 + c3; 79 cout << "c4 = c2 + c3, c4 = " << c4 << endl; 80 }
1 #pragma once 2 #include <string> 3 #include <cmath> 4 5 class Complex { 6 public: 7 static const std::string doc; 8 9 Complex(double real = 0.0, double imag = 0.0); 10 Complex(const Complex &other); 11 12 double get_real() const; 13 double get_imag() const; 14 void add(const Complex &other); 15 16 friend void output(const Complex &c); 17 friend double abs(const Complex &c); 18 friend Complex add(const Complex &c1, const Complex &c2); 19 friend bool is_equal(const Complex &c1, const Complex &c2); 20 friend bool is_not_equal(const Complex &c1, const Complex &c2); 21 22 private: 23 double m_real; 24 double m_imag; 25 };
1 #include "Complex.h" 2 #include <iostream> 3 #include<cmath> 4 #include<string> 5 6 // 静态成员初始化 7 const std::string Complex::doc = "a simplified Complex class"; 8 9 // 构造函数实现 10 Complex::Complex(double real, double imag) : m_real(real), m_imag(imag) {} 11 Complex::Complex(const Complex &other) : m_real(other.m_real), m_imag(other.m_imag) {} 12 13 // 成员函数实现 14 double Complex::get_real() const { return m_real; } 15 double Complex::get_imag() const { return m_imag; } 16 void Complex::add(const Complex &other) { 17 m_real += other.m_real; 18 m_imag += other.m_imag; 19 } 20 21 // 友元函数实现 22 void output(const Complex &c) { 23 std::cout << c.m_real << (c.m_imag >= 0 ? " + " : " - ") 24 << std::abs(c.m_imag) << "i"; 25 } 26 27 double abs(const Complex &c) { 28 return std::sqrt(c.m_real * c.m_real + c.m_imag * c.m_imag); 29 } 30 31 Complex add(const Complex &c1, const Complex &c2) { 32 return Complex(c1.m_real + c2.m_real, c1.m_imag + c2.m_imag); 33 } 34 35 bool is_equal(const Complex &c1, const Complex &c2) { 36 return (c1.m_real == c2.m_real) && (c1.m_imag == c2.m_imag); 37 } 38 39 bool is_not_equal(const Complex &c1, const Complex &c2) { 40 return !is_equal(c1, c2); 41 }
问题1:标准库模板类 complex 更简洁。函数和运算内在有关联,标准库通过运算符重载、内置函数等方式,让复数操作更贴近数学直觉,而自定义类需通过成员函数或全局函数间接实现,形式上更繁琐。
问题2:1.是,output 需要访问 m_real 和 m_imag 来格式化输出; abs 需要访问实部和虚部计算模长; add 需要访问两个复数的实部、虚部来做加法。这些函数若不设为友元,无法直接访问类的私有成员。
2.否,标准库 std::complex 的 abs 是通过全局函数实现的,它不需要成为友元,因为 std::complex 的实部和虚部可以通过 real() 和 imag() 成员函数公开获取, abs 函数通过这两个公开接口即可计算模长。
3.当外部函数(或类)需要直接访问类的私有成员,且这种访问是必要且合理的(如运算符重载、格式化输出、数学运算等场景),才考虑使用 friend 。
问题3:若要禁用 Complex c4 = c2; 形式的拷贝(即禁用拷贝构造函数),可以将拷贝构造函数设为私有且不实现,或者使用C++11及以上特性将其删除( = delete )。
任务3:
源代码:
1 #include "PlayerControl.h" 2 #include <iostream> 3 void test() { 4 PlayerControl controller; 5 std::string control_str; 6 std::cout << "Enter Control: (play/pause/next/prev/stop/quit):\n"; 7 while(std::cin >> control_str) { 8 if(control_str == "quit") 9 break; 10 ControlType cmd = controller.parse(control_str); 11 controller.execute(cmd); 12 std::cout << "Current Player control: " << PlayerControl::get_cnt() << "\n\n"; 13 } 14 } 15 16 int main() { 17 test(); 18 }
1 #pragma once 2 #include <string> 3 enum class ControlType {Play, Pause, Next, Prev, Stop, Unknown}; 4 class PlayerControl { 5 public: 6 PlayerControl(); 7 ControlType parse(const std::string& control_str); // 实现std::string -->ControlType转换 8 void execute(ControlType cmd) const; // 执行控制操作(以打印输出模拟) 9 static int get_cnt(); 10 private: 11 static int total_cnt; 12 };
1 #include "PlayerControl.h" 2 #include <iostream> 3 #include <algorithm> 4 int PlayerControl::total_cnt = 0; 5 PlayerControl::PlayerControl() {} 6 // 待补足 7 // 1. 将输入字符串转为小写,实现大小写不敏感 8 // 2. 匹配"play"/"pause"/"next"/"prev"/"stop"并返回对应枚举 9 // 3. 未匹配的字符串返回ControlType::Unknown 10 // 4. 每次成功调用parse时递增total_cnt 11 ControlType PlayerControl::parse(const std::string& control_str) { 12 // xxx 13 // 1. 将输入字符串转为小写,实现大小写不敏感 14 std::string lower_str = control_str; 15 std::transform(lower_str.begin(), lower_str.end(), lower_str.begin(), 16 [](unsigned char c) { return std::tolower(c); }); 17 18 // 2. 匹配命令并返回对应枚举值 19 ControlType cmd = ControlType::Unknown; 20 if (lower_str == "play") { 21 cmd = ControlType::Play; 22 } else if (lower_str == "pause") { 23 cmd = ControlType::Pause; 24 } else if (lower_str == "next") { 25 cmd = ControlType::Next; 26 } else if (lower_str == "prev") { 27 cmd = ControlType::Prev; 28 } else if (lower_str == "stop") { 29 cmd = ControlType::Stop; 30 } 31 32 // 3. 每次成功调用parse时递增total_cnt(Unknown类型不计数) 33 if (cmd != ControlType::Unknown) { 34 total_cnt++; 35 } 36 return cmd; 37 38 } 39 void PlayerControl::execute(ControlType cmd) const { 40 switch (cmd) { 41 case ControlType::Play: std::cout << "[play] Playing music...\n"; break; 42 case ControlType::Pause: std::cout << "[Pause] Music paused\n"; break; 43 case ControlType::Next: std::cout << "[Next] Skipping to next track\n"; break; 44 case ControlType::Prev: std::cout << "[Prev] Back to previous track\n"; break; 45 case ControlType::Stop: std::cout << "[Stop] Music stopped\n"; break; 46 default: std::cout << "[Error] unknown control\n"; break; 47 } 48 } 49 int PlayerControl::get_cnt() { 50 return total_cnt; 51 }
运行结果截图:

思考:
把[play]换成音乐符号;
把[Pause]换成暂停符号;
把[Next]换成块快进符号;
把[Prev]换成缩进符号;
把[Stop]换成暂停符号;
任务4
源代码:
1 #include "Fraction.h" 2 #include <iostream> 3 void test1(); 4 void test2(); 5 int main() { 6 std::cout << "测试1: Fraction类基础功能测试\n"; 7 test1(); 8 std::cout << "\n测试2: 分母为0测试: \n"; 9 test2(); 10 } 11 void test1() { 12 using std::cout; 13 using std::endl; 14 cout << "Fraction类测试: " << endl; 15 cout << Fraction::doc << endl << endl; 16 Fraction f1(5); 17 Fraction f2(3, -4), f3(-18, 12); 18 Fraction f4(f3); 19 cout << "f1 = "; output(f1); cout << endl; 20 cout << "f2 = "; output(f2); cout << endl; 21 cout << "f3 = "; output(f3); cout << endl; 22 cout << "f4 = "; output(f4); cout << endl; 23 const Fraction f5(f4.negative()); 24 cout << "f5 = "; output(f5); cout << endl; 25 cout << "f5.get_up() = " << f5.get_up() 26 << ", f5.get_down() = " << f5.get_down() << endl; 27 cout << "f1 + f2 = "; output(add(f1, f2)); cout << endl; 28 cout << "f1 - f2 = "; output(sub(f1, f2)); cout << endl; 29 cout << "f1 * f2 = "; output(mul(f1, f2)); cout << endl; 30 cout << "f1 / f2 = "; output(div(f1, f2)); cout << endl; 31 cout << "f4 + f5 = "; output(add(f4, f5)); cout << endl; 32 } 33 void test2() { 34 using std::cout; 35 using std::endl; 36 Fraction f6(42, 55), f7(0, 3); 37 cout << "f6 = "; output(f6); cout << endl; 38 cout << "f7 = "; output(f7); cout << endl; 39 cout << "f6 / f7 = "; output(div(f6, f7)); cout << endl; 40 }
1 #include "Fraction.h" 2 #include <iostream> 3 #include <algorithm> 4 #include <stdexcept> 5 6 const std::string Fraction::doc = "Fraction类 v0.01版.\n目前仅支持分数对象的构造、输出、加/减/乘/除运算."; 7 8 int gcd(int a, int b) { 9 a = std::abs(a); 10 b = std::abs(b); 11 while (b != 0) { 12 int temp = b; 13 b = a % b; 14 a = temp; 15 } 16 return a; 17 } 18 19 Fraction::Fraction(int up, int down) : m_up(up), m_down(down) { 20 if (down == 0) { 21 throw std::invalid_argument("分母不能为0"); 22 } 23 reduce(); 24 } 25 26 Fraction::Fraction(const Fraction &other) : m_up(other.m_up), m_down(other.m_down) {} 27 28 int Fraction::get_up() const { return m_up; } 29 int Fraction::get_down() const { return m_down; } 30 31 Fraction Fraction::negative() const { 32 return Fraction(-m_up, m_down); 33 } 34 35 void Fraction::reduce() { 36 if (m_down < 0) { 37 m_up = -m_up; 38 m_down = -m_down; 39 } 40 int g = gcd(m_up, m_down); 41 if (g != 0) { 42 m_up /= g; 43 m_down /= g; 44 } 45 } 46 47 void output(const Fraction &f) { 48 if (f.m_down == 1) { 49 std::cout << f.m_up; 50 } else { 51 std::cout << f.m_up << "/" << f.m_down; 52 } 53 } 54 55 Fraction add(const Fraction &f1, const Fraction &f2) { 56 int up = f1.m_up * f2.m_down + f2.m_up * f1.m_down; 57 int down = f1.m_down * f2.m_down; 58 return Fraction(up, down); 59 } 60 61 Fraction sub(const Fraction &f1, const Fraction &f2) { 62 int up = f1.m_up * f2.m_down - f2.m_up * f1.m_down; 63 int down = f1.m_down * f2.m_down; 64 return Fraction(up, down); 65 } 66 67 Fraction mul(const Fraction &f1, const Fraction &f2) { 68 int up = f1.m_up * f2.m_up; 69 int down = f1.m_down * f2.m_down; 70 return Fraction(up, down); 71 } 72 73 Fraction div(const Fraction &f1, const Fraction &f2) { 74 if (f2.m_up == 0) { 75 std::cout << "分母不能为" ; 76 return Fraction(0,1); 77 } 78 int up = f1.m_up * f2.m_down; 79 int down = f1.m_down * f2.m_up; 80 return Fraction(up, down); 81 }
1 #pragma once 2 #include <string> 3 4 class Fraction { 5 public: 6 static const std::string doc; 7 8 Fraction(int up = 0, int down = 1); 9 Fraction(const Fraction &other); 10 11 int get_up() const; 12 int get_down() const; 13 Fraction negative() const; 14 15 friend void output(const Fraction &f); 16 friend Fraction add(const Fraction &f1, const Fraction &f2); 17 friend Fraction sub(const Fraction &f1, const Fraction &f2); 18 friend Fraction mul(const Fraction &f1, const Fraction &f2); 19 friend Fraction div(const Fraction &f1, const Fraction &f2); 20 21 private: 22 void reduce(); 23 int m_up; 24 int m_down; 25 };
运行结果截图:

问题回答:
友元方案:
原因:友元函数可直接访问 Fraction 类的私有成员(分子 m_up 、分母 m_down ),无需通过 getter 函数间接获取,既能保证代码简洁性,又能高效实现分数的约分、运算及异常处理(如分母为0的校验)。这种设计在维持类封装性的同时,让外部函数能灵活操作内部数据,非常适配分数运算的场景。
实验总结
本次4个实验,涵盖类的设计与实现,封装性,静态成员,友元函数,多文件组织等知识,让我对面向对象程序设计有了一个更好的认识。

浙公网安备 33010602011771号