import time
import keras
from keras.utils import np_utils
start = time.time()
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
rows = 28
cols = 28
CLASSES = 10
x_train = x_train.reshape(x_train.shape[0], rows, cols, 1)
x_test = x_test.reshape(x_test.shape[0], rows, cols, 1)
y_train = np_utils.to_categorical(y_train, CLASSES)
y_test = np_utils.to_categorical(y_test, CLASSES)
x_train = x_train.astype("float32")
x_test = x_test.astype("float32")
x_train /= 255
x_test /= 255
model = keras.models.Sequential([
keras.layers.Conv2D(16, (3, 3), activation='relu', input_shape=x_train.shape[1:]),
keras.layers.MaxPool2D(pool_size=(2, 2)),
keras.layers.Conv2D(32, (3, 3), activation='relu'),
keras.layers.Conv2D(64, (3, 3), activation='relu'),
keras.layers.Flatten(),
keras.layers.Dense(128, activation='relu'),
keras.layers.Dropout(0.5),
keras.layers.Dense(128, activation='relu'),
keras.layers.Dropout(0.5),
keras.layers.Dense(10, activation='softmax')
])
model.summary()
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=64, epochs=5)
evaluate = model.evaluate(x_test, y_test)
print(evaluate)
print("elapsed: ", time.time() - start)
model.save("mnist-con.h5")
无边沉沦,苦海渡航
浙公网安备 33010602011771号