pytorch学习笔记(4)--dataloader
batch_size:有多少张
shuffle=True:顺序不打乱
num_workers: 进程数
drop_last:最后不够64张是否舍去
import torchvision from torch.utils.data import DataLoader # 1 from torch.utils.tensorboard import SummaryWriter test_data = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor(), download=False) test_loader = DataLoader(dataset=test_data, batch_size=64, shuffle=True, num_workers=0, drop_last=True) # img, target = test_data[0] print(img.shape) print(target) writer = SummaryWriter("dataloader") for epoch in range(2): step = 0 for data in test_loader: imgs, targets = data # print(imgs.shape) # print(targets) writer.add_images("epoch: {}".format(epoch), imgs, step) step = step+1 writer.close()

浙公网安备 33010602011771号