HDU 5399 Too Simple(过程中略微用了一下dfs)——多校练习9
Too Simple
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Problem Description
Rhason Cheung had a simple problem, and asked Teacher Mai for help. But Teacher Mai thought this problem was too simple, sometimes naive. So she ask you for help.
Teacher Mai hasm functions f1,f2,⋯,fm:{1,2,⋯,n}→{1,2,⋯,n} (that
means for all x∈{1,2,⋯,n},f(x)∈{1,2,⋯,n} ).
But Rhason only knows some of these functions, and others are unknown.
She wants to know how many different function seriesf1,f2,⋯,fm there
are that for every i(1≤i≤n) ,f1(f2(⋯fm(i)))=i .
Two function series f1,f2,⋯,fm and g1,g2,⋯,gm are
considered different if and only if there exist i(1≤i≤m),j(1≤j≤n) ,fi(j)≠gi(j) .
Teacher Mai has
She wants to know how many different function series
Input
For each test case, the first lines contains two numbers n,m(1≤n,m≤100) .
The following arem lines.
In i -th
line, there is one number −1 or n space-separated
numbers.
If there is only one number−1 ,
the function fi is
unknown. Otherwise the j -th
number in the i -th
line means fi(j) .
The following are
If there is only one number
Output
For each test case print the answer modulo 109+7 .
Sample Input
3 3 1 2 3 -1 3 2 1
Sample Output
1HintThe order in the function series is determined. What she can do is to assign the values to the unknown functions.
题意:给你m个函数f1,f2,⋯,fm:{1,2,⋯,n}→{1,2,⋯,n}(即全部的x∈{1,2,⋯,n},相应的f(x)∈{1,2,⋯,n})。已知当中一部分函数的函数值,问你有多少种不同的组合使得全部的i(1≤i≤n),满足f1(f2(⋯fm(i)))=i
对于函数集f1,f2,⋯,fm and g1,g2,⋯,gm。当且仅当存在一个i(1≤i≤m),j(1≤j≤n),fi(j)≠gi(j),这种组合才视为不同。
假设还是不理解的话,我们来解释一下例子,3 3
1 2 3
-1
3 2 1
例子写成函数的形式就是
n=3,m=3
f1(1)=1,f1(2)=2,f1(3)=3
f2(1)、f2(2)、f2(3)的值均未知
f3(1)=3,f3(2)=2,f3(3)=1
所以要使全部的i(1≤i≤n),满足f1(f2(⋯fm(i)))=i。仅仅有一种组合情况,即f2(1)=3,f2(2)=2,f2(3)=1这么一种情况
解题思路:事实上。细致想想。你就会发现,此题的解跟-1的个数有关,当仅仅有一个-1的时候,由于相应关系都已经决定了。所以仅仅有1种可行解,而当你有两个-1时,当中一个函数的值能够依据还有一个函数的改变而确定下来,故有n!种解。
依此类推,当有k个-1时,解为
所以,我们仅仅须要提前将n!
计算好取模存下来。剩下的就是套公式了
有一点须要提醒的是,当-1的个数为0时。即不存在-1的情况,解并不一定为0,若不存在-1的情况下仍满足对于全部的i(1≤i≤n),满足f1(f2(⋯fm(i)))=i,输出1。否则输出0。所以加个dfs推断一下方案是否可行。多校的时候就被这一点坑了。看来还是考虑得不够多。
若对上述有什么不理解的地方,欢迎提出。
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<queue>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<stdlib.h>
#include<cmath>
#include<string>
#include<algorithm>
#include<iostream>
#define exp 1e-10
using namespace std;
const int N = 105;
const int inf = 1000000000;
const int mod = 1000000007;
__int64 s[N];
bool v[N];
int w[N][N];
int dfs(int t,int x)
{
if(t==1)
return w[t][x];
return dfs(t-1,w[t][x]);
}
int main()
{
int n,m,i,j,k,x;
bool flag;
__int64 ans;
s[0]=1;
for(i=1;i<N;i++)
s[i]=(s[i-1]*i)%mod;
while(~scanf("%d%d",&n,&m))
{
flag=true;
for(k=0,i=1;i<=m;i++)
{
scanf("%d",&x);
if(x==-1)
k++;
else
{
memset(v,false,sizeof(v));
v[x]=true;w[i][1]=x;
for(j=2;j<=n;j++)
{
scanf("%d",&x);
v[x]=true;
w[i][j]=x;
}
for(j=1;j<=n;j++)
if(!v[j])
break;
if(j<=n)
flag=false;
}
}
/*for(i=1;i<=m;i++)
{
for(j=1;j<=n;j++)
printf("%d ",w[i][j]);
printf("\n");
}*/
if(!flag)
puts("0");
else if(!k)
{
for(i=1;i<=n;i++)
if(dfs(m,i)!=i)
break;
//printf("%d*\n",i);
if(i>n)
puts("1");
else
puts("0");
}
else
{
for(ans=1,i=1;i<k;i++)
ans=ans*s[n]%mod;
printf("%I64d\n",ans);
}
}
return 0;
}菜鸟成长记

浙公网安备 33010602011771号