java多线程6:ReentrantLock
下面看下JUC包下的一大并发神器ReentrantLock,是一个可重入的互斥锁,具有比synchronized更为强大的功能。
ReentrantLock基本用法
先来看一下ReentrantLock的简单用法
public class MyDomain1 {
private Lock lock = new ReentrantLock();
public void method1() {
System.out.println("进入method1方法");
try {
lock.lock();
for (int i = 0; i < 5; i++) {
System.out.println(Thread.currentThread().getName() + " i=" + i);
Thread.sleep(1000);
}
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
}
public class Mythread1_1 extends Thread {
private MyDomain1 myDomain1;
public Mythread1_1(MyDomain1 myDomain1) {
this.myDomain1 = myDomain1;
}
@Override
public void run() {
myDomain1.method1();
}
}
开启三个线程同时执行测试方法
@Test
public void test1() throws InterruptedException {
MyDomain1 myDomain1 = new MyDomain1();
Mythread1_1 a = new Mythread1_1(myDomain1);
Mythread1_1 c = new Mythread1_1(myDomain1);
Mythread1_1 d = new Mythread1_1(myDomain1);
a.start();
c.start();
d.start();
a.join();
c.join();
d.join();
}
执行结果:
进入method1方法 Thread-0 i=0 进入method1方法 进入method1方法 Thread-0 i=1 Thread-0 i=2 Thread-0 i=3 Thread-0 i=4 Thread-1 i=0 Thread-1 i=1 Thread-1 i=2 Thread-1 i=3 Thread-1 i=4 Thread-2 i=0 Thread-2 i=1 Thread-2 i=2 Thread-2 i=3 Thread-2 i=4
可以看到,代码流程进入到lock.lock()以后没有任何的交替打印,都是一个线程执行完后一个线程才开始执行,说明ReentrantLock具有加锁的功能。
看下ReentrantLock源码的构造方法:
/**
* Creates an instance of {@code ReentrantLock}.
* This is equivalent to using {@code ReentrantLock(false)}.
*/
public ReentrantLock() {
sync = new NonfairSync();
}
/**
* Creates an instance of {@code ReentrantLock} with the
* given fairness policy.
*
* @param fair {@code true} if this lock should use a fair ordering policy
*/
public ReentrantLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
}
可以看到ReentrantLock支持两种加锁模式:公平锁和非公平锁。它是如何实现的呢?继续往下看
我们测试用例中,默认使用的是非公平锁的加锁方法,看下 NonfairSync 的lock() 方法
/**
* Sync object for non-fair locks
*/
static final class NonfairSync extends Sync {
private static final long serialVersionUID = 7316153563782823691L;
/**
* Performs lock. Try immediate barge, backing up to normal
* acquire on failure.
*/
final void lock() {
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
else
acquire(1);
}
protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
}
}
第12行的 compareAndSetState方法,当第一个线程执行次方法时,会将 state 设置为1,执行成功后,exclusiveOwnerThread=线程1。
此时线程1正常执行业务,当线程2走到lock方法时,此时线程12执行compareAndSetState方法将返回false,执行 acquire(1)
/**
* Acquires in exclusive mode, ignoring interrupts. Implemented
* by invoking at least once {@link #tryAcquire},
* returning on success. Otherwise the thread is queued, possibly
* repeatedly blocking and unblocking, invoking {@link
* #tryAcquire} until success. This method can be used
* to implement method {@link Lock#lock}.
*
* @param arg the acquire argument. This value is conveyed to
* {@link #tryAcquire} but is otherwise uninterpreted and
* can represent anything you like.
*/
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
非公平锁实现的tryAcquire
/**
* Performs non-fair tryLock. tryAcquire is implemented in
* subclasses, but both need nonfair try for trylock method.
*/
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
此时线程2得到的state应该是1,并且 current != getExclusiveOwnerThread(),所以线程2会继续执行 acquireQueued(addWaiter(Node.EXCLUSIVE), arg)。
注意第8行到第13行,如果此时线程1已经释放了锁,那么线程2得到的state就是0了,它将走获取锁的逻辑,
第14行到第20行,这块就是ReentrantLock支持可重入的实现,也就是如果当前执行的线程是持有锁的线程,那么就可以获取锁,并将state+1。
如果线程1此时还没有释放锁,那么线程2将走到等待队列里
*
* @param node the node
* @param arg the acquire argument
* @return {@code true} if interrupted while waiting
*/
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
这个for循环对于线程2来说,首先再次尝试去获取锁,因为此时线程1可能已经释放锁了,如果依旧获取锁失败,则执行
/**
* Checks and updates status for a node that failed to acquire.
* Returns true if thread should block. This is the main signal
* control in all acquire loops. Requires that pred == node.prev.
*
* @param pred node's predecessor holding status
* @param node the node
* @return {@code true} if thread should block
*/
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
int ws = pred.waitStatus;
if (ws == Node.SIGNAL)
/*
* This node has already set status asking a release
* to signal it, so it can safely park.
*/
return true;
if (ws > 0) {
/*
* Predecessor was cancelled. Skip over predecessors and
* indicate retry.
*/
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {
/*
* waitStatus must be 0 or PROPAGATE. Indicate that we
* need a signal, but don't park yet. Caller will need to
* retry to make sure it cannot acquire before parking.
*/
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
return false;
}
这块代码,最好打个断点一步一步去执行,更容易看出每一步执行的逻辑以及值。
这个ws是节点predecessor的waitStatus,很明显是0,所以此时把pred的waitStatus设置为Noed.SIGNAL即-1并返回false。
既然返回了false,上面的if自然不成立,再走一次for循环,还是先尝试获取锁,不成功,继续走shouldParkAfterFailedAcquire,此时waitStatus为-1,小于0,走第三行的判断,返回true。
/**
* Convenience method to park and then check if interrupted
*
* @return {@code true} if interrupted
*/
private final boolean parkAndCheckInterrupt() {
LockSupport.park(this);
return Thread.interrupted();
}
最后一步,线程2调用LockSupport的park方法。
接下来就到线程1执行完任务后,将执行unlock方法 释放锁
public void unlock() {
sync.release(1);
}
/**
* Releases in exclusive mode. Implemented by unblocking one or
* more threads if {@link #tryRelease} returns true.
* This method can be used to implement method {@link Lock#unlock}.
*
* @param arg the release argument. This value is conveyed to
* {@link #tryRelease} but is otherwise uninterpreted and
* can represent anything you like.
* @return the value returned from {@link #tryRelease}
*/
public final boolean release(int arg) {
if (tryRelease(arg)) {
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
}
首先tryRelease(1) ,代码逻辑比较简单,就是将state设置0 (注意这是同一个锁只lock一次的情况下),并将 exclusiveOwnerThread设置为null
protected final boolean tryRelease(int releases) {
int c = getState() - releases;
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
if (c == 0) {
free = true;
setExclusiveOwnerThread(null);
}
setState(c);
return free;
}
当锁释放完成后,继续执行release方法的 unparkSuccessor(h),
/**
* Wakes up node's successor, if one exists.
*
* @param node the node
*/
private void unparkSuccessor(Node node) {
/*
* If status is negative (i.e., possibly needing signal) try
* to clear in anticipation of signalling. It is OK if this
* fails or if status is changed by waiting thread.
*/
int ws = node.waitStatus;
if (ws < 0)
compareAndSetWaitStatus(node, ws, 0);
/*
* Thread to unpark is held in successor, which is normally
* just the next node. But if cancelled or apparently null,
* traverse backwards from tail to find the actual
* non-cancelled successor.
*/
Node s = node.next;
if (s == null || s.waitStatus > 0) {
s = null;
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)
s = t;
}
if (s != null)
LockSupport.unpark(s.thread);
}
h的下一个Node,这个Node里面的线程就是线程2,由于这个Node不等于null,线程2最终被unpark了,线程2可以继续运行。
有一个很重要的问题是:锁被解了怎样保证整个FIFO队列减少一个Node呢?
还记得线程2被park在 acquireQueued方法
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
被阻塞的线程2是被阻塞在第14行,注意这里并没有return语句,阻塞完成线程2继续进行for循环。线程2所在的Node的前驱Node是p,线程2尝试tryAcquire,成功,
然后线程2就成为了head节点了,把p的next设置为null,这样原头Node里面的所有对象都不指向任何块内存空间,h属于栈内存的内容,方法结束被自动回收,
这样随着方法的调用完毕,原头Node也没有任何的引用指向它了,这样它就被GC自动回收了。此时,遇到一个return语句,acquireQueued方法结束,后面的Node也是一样的原理。
至此线程2 lock方法执行完成,并成功获取到锁。
至此ReentrantLock的非公平锁的加锁与锁释放逻辑已经大致清楚了,那么公平锁的加锁过程又是如何呢?
/**
* Fair version of tryAcquire. Don't grant access unless
* recursive call or no waiters or is first.
*/
protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
}
1:tryAcquire(1),因为是第一个线程,所以当前status=0,尝试获取锁,hasQueuedPredecessors方法也是和非公平锁一个代码上的区别
public final boolean hasQueuedPredecessors() {
// The correctness of this depends on head being initialized
// before tail and on head.next being accurate if the current
// thread is first in queue.
Node t = tail; // Read fields in reverse initialization order
Node h = head;
Node s;
return h != t &&
((s = h.next) == null || s.thread != Thread.currentThread());
}
公平锁获取锁之前首先判断当前队列是否存在(head==tail)[不存在],设置staus=1,获取锁成功。
如果等待队列中存在等待线程,则取出第一个等待的线程(head.next),并返回第一个等待的线程是否是当前线程,
只有当等到队列的第一个等待的线程是当前线程尝试获取锁的线程,才会获取锁成功。
假如此时线程t2,也来获取锁,调用tryAcquire(1)时,因为status!=0,返回fasle,调用addWaiter(Node.EXCLUSIVE),
此时会生成一个队列,队列的head为 new Node(), tail为t2的Node,调用acquireQueued(t2的Node),因为此时t2所在Node的prev为head,所以会尝试直接获取一次锁,
如果获取成功,将t2的Node设置为head,如果没有获取锁,shouldParkAfterFailedAcquire(),t2 Park()。
ReentrantLock持有的锁
定义一个对象,分别有两个测试方法,一个用ReentrantLock加锁,一个用synchronized加锁
public class MyDomain1 {
private Lock lock = new ReentrantLock();
public void method1() {
System.out.println("进入method1方法");
try {
lock.lock();
for (int i = 0; i < 5; i++) {
System.out.println(Thread.currentThread().getName() + " i=" + i);
Thread.sleep(1000);
}
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
// 为了测试 lock 和 synchronized同步方法不是同一把锁
public synchronized void method2() {
System.out.println("进入method2方法");
for (int j = 0; j < 5; j++) {
System.out.println(Thread.currentThread().getName() + " j=" + j);
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
定义两个线程类,分别调用一个方法
public class Mythread1_1 extends Thread {
private MyDomain1 myDomain1;
public Mythread1_1(MyDomain1 myDomain1) {
this.myDomain1 = myDomain1;
}
@Override
public void run() {
myDomain1.method1();
}
}
public class Mythread1_2 extends Thread {
private MyDomain1 myDomain1;
public Mythread1_2(MyDomain1 myDomain1) {
this.myDomain1 = myDomain1;
}
@Override
public void run() {
myDomain1.method2();
}
}
@Test
public void test1() throws InterruptedException {
MyDomain1 myDomain1 = new MyDomain1();
Mythread1_1 a = new Mythread1_1(myDomain1);
Mythread1_2 b = new Mythread1_2(myDomain1);
a.start();
b.start();
a.join();
b.join();
}
执行结果:
进入method1方法 Thread-0 i=0 进入method2方法 Thread-1 j=0 Thread-0 i=1 Thread-1 j=1 Thread-1 j=2 Thread-0 i=2 Thread-0 i=3 Thread-1 j=3 Thread-0 i=4 Thread-1 j=4
可以看到两个线路交替打印,说明 ReentrantLock 和 synchronized同步方法不是同一把锁
Condition
ReentrantLock实现等待/通知模型,这也是比synchronized更为强大的功能点之一。
1、一个ReentrantLock里面可以创建多个Condition实例,实现多路通知
2、notify()方法进行通知时,被通知的线程时Java虚拟机随机选择的,但是ReentrantLock结合Condition可以实现有选择性地通知
3、await()和signal()之前,必须要先lock()获得锁,使用完毕在finally中unlock()释放锁,这和wait()、notify()/notifyAll()使用前必须先获得对象锁是一样的
先看个示例
定义一个对象并new了两个condition,然后分别执行await方法,再定义一个signal方法,只唤醒其中一个condition
public class MyDomain2 {
private Lock lock = new ReentrantLock();
private Condition conditionA = lock.newCondition();
private Condition conditionB = lock.newCondition();
public void await() {
System.out.println("进入await方法");
try {
lock.lock();
System.out.println(Thread.currentThread().getName() + " conditionA await " + System.currentTimeMillis());
conditionA.await();
System.out.println(Thread.currentThread().getName() + " conditionA await out " + System.currentTimeMillis());
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public void await2() {
System.out.println("进入await2方法");
try {
lock.lock();
System.out.println(Thread.currentThread().getName() + " conditionB await " + System.currentTimeMillis());
conditionB.await();
System.out.println(Thread.currentThread().getName() + " conditionB await out " + System.currentTimeMillis());
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public void signal() {
System.out.println("进入signal方法");
try {
lock.lock();
System.out.println(Thread.currentThread().getName() + " conditionA signal " + System.currentTimeMillis());
conditionA.signal();
Thread.sleep(3000);
System.out.println(Thread.currentThread().getName() + " conditionA signal " + System.currentTimeMillis());
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
}
一个线程执行await方法,一个线程负责执行signal
public class Mythread2_1 extends Thread {
private MyDomain2 myDomain2;
public Mythread2_1(MyDomain2 myDomain2) {
this.myDomain2 = myDomain2;
}
@Override
public void run() {
myDomain2.await();
}
}
public class Mythread2_2 extends Thread {
private MyDomain2 myDomain2;
public Mythread2_2(MyDomain2 myDomain2) {
this.myDomain2 = myDomain2;
}
@Override
public void run() {
myDomain2.signal();
}
}
测试方法
@Test
public void test2() throws InterruptedException {
MyDomain2 myDomain2 = new MyDomain2();
Mythread2_1 a = new Mythread2_1(myDomain2);
Mythread2_2 b = new Mythread2_2(myDomain2);
a.start();
Thread.sleep(5000);
b.start();
a.join();
b.join();
}
执行结果:
进入await方法 Thread-0 conditionA await 1639549418811 进入signal方法 Thread-1 conditionA signal 1639549423817 Thread-1 conditionA signal 1639549426820 Thread-0 conditionA await out 1639549426820
可以看到进入await方法后,线程1 park住了,5秒钟后,待signal执行完成后,线程1才开始继续执行。
同时condition还有signalAll方法,可以唤醒同一个condition所有在等待的线程。
看过 ReentrantLock源码的应该注意到 AbstractQueuedSynchronizer, 它也是JUC包实现的核心抽象同步器,
也是CountDownLatch、Semphore等并发类的核心组件,这个我们后续再继续研究。
参考文献
1:《Java并发编程的艺术》
2:《Java多线程编程核心技术》
==================================================================
勇气是,尽管你感到害怕,但仍能迎难而上。
尽管你感觉痛苦,但仍能直接面对。
向前一步,也许一切都会不同。
==================================================================

浙公网安备 33010602011771号