UVa 884 - Factorial Factors
题目:输出n!中素数因数的个数。
分析:数论。这里使用欧拉筛法计算素数,在计算过程中求解就可以。
传统筛法是利用每一个素数,筛掉自己的整数倍;
欧拉筛法是利用当前计算出的全部素数,乘以当前数字筛数;
所以每一个前驱的素椅子个数一定比当前数的素因子个数少一个。
说明:重新用了“线性筛法”。
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
using namespace std;
int prime[1000001];
int visit[1000001];
int numbe[1000001];
int sums[1000001];
int main()
{
	//筛法计算素数 
	memset(visit, 0, sizeof(visit));
	memset(numbe, 0, sizeof(numbe));
	int count = 0;
	for (int i = 2 ; i < 1000001 ; ++ i) {
		if (!visit[i]) {
			prime[count ++] = i;
			numbe[i] = 1;
		}
		for (int j = 0 ; j < count && i*prime[j] < 1000001 ; ++ j) {
			visit[i*prime[j]] = 1;
			numbe[i*prime[j]] = numbe[i]+1;
		}
		sums[i] = sums[i-1] + numbe[i];
	}
	
	int n;
	while (~scanf("%d",&n))
		printf("%d\n",sums[n]);
		
    return 0;
}
 
                    
                     
                    
                 
                    
                 
                
            
         
         浙公网安备 33010602011771号
浙公网安备 33010602011771号