ML - linear regression
import numpy as np from sklearn import linear_model import matplotlib.pyplot as plt x = np.arange(0,3)[:,np.newaxis] #x = np.array([[0],[1],[2]]) y = [2, 3, 4] x0 = np.array([13,15,17])[:,np.newaxis] y0 = np.array([15,17,19]) reg = linear_model.LinearRegression() reg.fit (x, y) y1 = reg.predict(x0)
print(reg.coef_)
print(reg.intercept_)
plt.scatter(x0,y0,color='k') plt.plot(x0,y1,color='b') plt.xlabel('X') plt.ylabel('y') plt.show()