2025寒训:寒末上午(数学)Day 3
复数
\(i^2=-1\)
\(z=a+bi\)
\(z=re^{i\theta}\)
\(z=r(\cos{\theta}+i\sin{\theta})\)
求\(\omega^n=1\)
\(\omega=e^{2\pi i\frac{k}{n}}=\omega_n^k,\ \omega_n=e^{2\pi \frac{i}{n}}\) 称为 \(n\) 次单位根
卷积
\(A(x)=\sum_{i=0}^{n-1}a_ix^i\)
\(B(x)=\sum_{i=0}^{n-1}b_ix^i\)
\(C(x)=A(x)+B(x)=\sum_{i=0}^{2n-2}c_ix^i\)
\(C_i=\sum_{j=1}^ia_jb_{i-j}\)
FFT(DFT+IDFT)
令 \(x_i=\omega_n^i\)
\(A_1(x)=a_0+a_2x+a_4x^2+\dots+a_{n-2}x^{\frac{n}{2}-1}\)
\(A_2(x)=a_1+a_3x+a_5x^2+\dots+a_{n-1}x^{\frac{n}{2}-1}\)
\(A(x)=A_1(x^2)+A_2(x^2)\)
\(\begin{align*}\begin{split}(\omega_n^k)^2= \left \{\begin{array}{ll} \omega_{\frac{n}{2}}^k, & 0\le k<\frac{n}{2}\\ \omega_{\frac{n}{2}}^{k-\frac{n}+{2}}, & \frac{n}{2}\le k<n\end{array}\right.\end{split}\end{align*}\)
递归计算 \(A_j(\omega_{\frac{n}{2}}^i)\)
\(b_k=\sum_{j=0}^{n-1}a_j(\omega_n^k)^j\)
\(a_k=\frac{1}{n}\sum_{j=0}^{n-1}a_j(\omega_n^{-k})^j\)
NTT
取模数 \(P\) 的原根 \(g\),用 \(g^{\frac{(P-1)}{n}}\) 代替 \(\omega_n\)
博弈论——Nim 游戏与 SG 函数
懒得写了
见 oi.wiki
hello, I'm yuzihang, if you need to copy this, please quote this url: https://www.cnblogs.com/yuzihang/p/18714998

浙公网安备 33010602011771号