线性回归10-模型保存和加载
1 sklearn模型的保存和加载API
- from sklearn.externals import joblib
- 保存:joblib.dump(estimator, 'test.pkl')
- 加载:estimator = joblib.load('test.pkl')
2 线性回归的模型保存加载案例
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression,SGDRegressor,RidgeCV,Ridge
from sklearn.metrics import mean_squared_error
#from sklearn.externals import joblib
import joblib
def dump_load() :
"""
模型保存和加载
:return:
"""
# 1.获取数据
boston = load_boston()
# 2.数据处理
# 2.1 分割数据
x_train, x_test, y_train, y_test = train_test_split(boston.data, boston.target,random_state=22,test_size=0.2)
# 3.特征工程-数据标准化
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.fit_transform(x_test)
# # 4.机器学习-线性回归(梯度下降)
# # 4.1 模型训练
# estimator = Ridge(alpha=1.0)
# estimator.fit(x_train, y_train)
#
# # 4.2 模型保存
# joblib.dump(estimator,"./data/test1.pkl")
# # 4.3 模型加载
estimator=joblib.load("./data/test1.pkl")
# 5.模型评估
y_predict = estimator.predict(x_test)
print("预测值为:\n", y_predict)
print("模型中的系数为:\n", estimator.coef_)
print("模型中的偏置为:\n", estimator.intercept_)
# 评价指标 均方误差
error = mean_squared_error(y_test, y_predict)
print("均方误差:\n", error)
return None
#调用函数
if __name__=='__main__':
dump_load()
5.4 结果
直接调用模型和原本模型中的结果是一样的
注:保证结果一致,需要参数一样,同时运行时需要运行当前的代码

浙公网安备 33010602011771号