k近邻8-案例:鸢尾花种类预测—流程实现

1 数据集

2 方法

  • sklearn.neighbors.KNeighborsClassifier(n_neighbors=5,algorithm='auto')
    • algorithm(auto,ball_tree, kd_tree, brute) -- 选择什么样的算法进行计算

3 案例实现

  • 导入模块
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
  • 获取sklearn数据集并进行分割
# 1.获取数据集
iris = load_iris()

# 2.数据基本处理
# x_train,x_test,y_train,y_test为训练集特征值、测试集特征值、训练集目标值、测试集目标值
x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=22)
  • 数据标准化,特征值标准化
# 3、特征工程:标准化
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)
  • 模型训练预测
# 4、机器学习(模型训练)
estimator = KNeighborsClassifier(n_neighbors=9)
estimator.fit(x_train, y_train)
# 5、模型评估
# 方法1:比对真实值和预测值
y_predict = estimator.predict(x_test)
print("预测结果为:\n", y_predict)
print("比对真实值和预测值:\n", y_predict == y_test)
# 方法2:直接计算准确率
score = estimator.score(x_test, y_test)
print("准确率为:\n", score)

注:scikit-learn 要用稳定版本 0.19.0

posted @ 2021-09-13 19:10  Trouvaille_fighting  阅读(172)  评论(0)    收藏  举报