'binary_crossentropy' & 'categorical_crossentropy' in keras
In model.compile(*) of keras, I met binary_crossentropy & categorical_crossentropy. These two kinds of loss somehow made me confused.
Checking their underlying will reveal the mechanism of these two kinds of loss.
| loss | refer to |
|---|---|
| binary_crossentropy | K.mean(K.binary_crossentropy(y_true, y_pred), axis=-1) |
| categorical_crossentropy | tf.nn.softmax_cross_entropy_with_logits(labels=target, logits=output) |
The problem is what is binary_crossentropy and softmax_cross_entropy_with_logits in TensorFlow.
binary_crossentropy(andtf.nn.sigmoid_cross_entropy_with_logitsunder the hood) is for binary multi-label classification (labels are independent).
categorical_crossentropy(andtf.nn.softmax_cross_entropy_with_logitsunder the hood) is for multi-class classification (classes are exclusive).
ref:
python - Keras: binary_crossentropy & categorical_crossentropy confusion - Stack Overflow
https://stackoverflow.com/questions/47877083/keras-binary-crossentropy-categorical-crossentropy-confusion
浙公网安备 33010602011771号