from keras.applications.vgg16 import VGG16
from keras.models import Sequential
from keras.layers import Conv2D,MaxPool2D,Activation,Dropout,Flatten,Dense
from keras.optimizers import SGD
from keras.preprocessing.image import ImageDataGenerator,img_to_array,load_img
import numpy as np
vgg16_model = VGG16(weights='imagenet',include_top=False, input_shape=(150,150,3))
#keras提供了几种VGG16的模型,imagenet表示,这个模型是用imagenet数据集训练的。
#include_top:顶层去掉了。不包含全连接层
#input_shape=输入数据的形状
# 搭建全连接层
top_model = Sequential()
top_model.add(Flatten(input_shape=vgg16_model.output_shape[1:]))
top_model.add(Dense(256,activation='relu'))
top_model.add(Dropout(0.5))
top_model.add(Dense(2,activation='softmax'))
model = Sequential()
model.add(vgg16_model)
model.add(top_model)
train_datagen = ImageDataGenerator(
rotation_range = 40, # 随机旋转度数
width_shift_range = 0.2, # 随机水平平移
height_shift_range = 0.2,# 随机竖直平移
rescale = 1/255, # 数据归一化
shear_range = 20, # 随机错切变换
zoom_range = 0.2, # 随机放大
horizontal_flip = True, # 水平翻转
fill_mode = 'nearest', # 填充方式
)
test_datagen = ImageDataGenerator(
rescale = 1/255, # 数据归一化
)
batch_size = 32
# 生成训练数据
train_generator = train_datagen.flow_from_directory(
'image/train',
target_size=(150,150),
batch_size=batch_size,
)
# 测试数据
test_generator = test_datagen.flow_from_directory(
'image/test',
target_size=(150,150),
batch_size=batch_size,
)
#train_generator.class_indices#打印类别
# 定义优化器,代价函数,训练过程中计算准确率
model.compile(optimizer=SGD(lr=1e-4,momentum=0.9),loss='categorical_crossentropy',metrics=['accuracy'])
model.fit_generator(train_generator,steps_per_epoch=len(train_generator),epochs=20,validation_data=test_generator,validation_steps=len(test_generator))
model.save('model_vgg16.h5')
#进行预测
from keras.models import load_model
import numpy as np
label = np.array(['cat','dog'])
# 载入模型
model = load_model('model_vgg16.h5')
# 导入图片
image = load_img('image/test/cat/cat.1003.jpg')
image
image = image.resize((150,150))
image = img_to_array(image)
image = image/255
image = np.expand_dims(image,0)
image.shape
print(label[model.predict_classes(image)])
