【剑指offer】Java实现(持续更新中)
面试题3 二维数组中的查找 Leetcode--74 Search a 2D Matrix
 
1 /*Java 2 Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties: 3 4 Integers in each row are sorted from left to right. 5 The first integer of each row is greater than the last integer of the previous row. 6 7 For example, 8 9 Consider the following matrix: 10 11 [ 12 [1, 3, 5, 7], 13 [10, 11, 16, 20], 14 [23, 30, 34, 50] 15 ] 16 17 Given target = 3, return true. 18 本题最简单的方法循环遍历行与列 但是时间复杂度较高。 19 */ 20 class Solution { 21 public boolean searchMatrix(int[][] matrix, int target) { 22 boolean find = false; 23 int rows,cols; 24 if (matrix == null || matrix.length==0) { 25 rows = 0; 26 cols = 0; 27 } else { 28 rows = matrix.length; 29 cols = matrix[0].length; 30 } 31 32 if (matrix != null && rows > 0 && cols > 0) { 33 int row = 0; 34 int col = cols-1; 35 while(row<rows && col>=0){ 36 if(matrix[row][col]==target){ 37 find=true; 38 break; 39 } 40 41 else if(matrix[row][col]>target){ 42 col--; 43 }else{ 44 row++; 45 } 46 } 47 } 48 49 return find; 50 } 51 public static void main(String[] args) { 52 int[][] matrix1 = { { 1, 3, 5, 7 }, { 10, 11, 16, 20 }, { 23, 30, 34, 50 } }; 53 54 int[][] matrix = {}; 55 int target = 55; 56 SearchA2DMatrix cc = new SearchA2DMatrix(); 57 boolean find = cc.searchMatrix(matrix, target); 58 System.out.println(find); 59 } 60 }
面试题5 从尾到头打印链表 -------Leetcode 206题 Reverse Linked List
package easy;
import java.util.Stack;
import easy.ListNode;
public class L206ReverseLinkedList {
    /*
     * Reverse a singly linked list. 先读入,后输出。典型的先进后出,可用栈来实现。
     */
    /**
     * Definition for singly-linked list.
     * 
     * public class ListNode { 
     *         int val; 
     *         ListNode next;
     *         ListNode(int x) { val = x; }
     * }
     */
    public ListNode reverseList(ListNode head) {
        if (head == null)
            return head;
        Stack<Integer> myStack = new Stack<Integer>();
        ListNode pNode = head;
        while (pNode != null) {
            myStack.push(pNode.val);
            pNode = pNode.next;
        }
        int size = myStack.size();
        ListNode newHead = new ListNode(myStack.peek());
        myStack.pop();
        if (size == 1)
            return newHead;
        ListNode node = new ListNode(myStack.peek());
        newHead.next = node;
        myStack.pop();
        while (!myStack.empty()) {
            node.next = new ListNode(myStack.peek());
            myStack.pop();
            node = node.next;
        }
        while (newHead != null) {
            System.out.println(newHead.val);
            newHead = newHead.next;
        }
        return newHead;
    }
    public static void main(String[] args) {
        ListNode head1 = new ListNode(1);
        ListNode head2 = new ListNode(2);
        ListNode head3 = new ListNode(3);
        ListNode head4 = new ListNode(4);
        head1.next = head2;
        head2.next = head3;
        head3.next = head4;
        head4.next = null;
        L206ReverseLinkedList cc = new L206ReverseLinkedList();
        cc.reverseList(head1);
    }
}
面试题6:重建二叉树,由二叉树的前序遍历和中序遍历重建二叉树——Leetcode 105.Construct Binary Tree from Preorder and Inorder Traversal
package medium;
//面试题6 
public class L105ConstructBinaryTreefromPreorderandInorderTraversal {
	/*
	 * 根据前序遍历与中序遍历重建一个二叉树
	 */
	public TreeNode buildTree(int[] preorder, int[] inorder) {
		if (preorder == null || inorder == null) {
			return null;
		}
		int length = preorder.length;
		if(length==0){
			TreeNode root =null;
			return root;
		}
		//System.out.println(length);
		int startPre = 0;
		int endPre = length - 1;
		int startIn = 0;
		int endIn = length - 1;
		return buildTreeCore(preorder, inorder, startPre, endPre, startIn, endIn);
	}
	public TreeNode buildTreeCore(int[] preorder, int[] inorder, int startPre, int endPre, int startIn, int endIn) {
		// 前序遍历的第一个结点为根节点。
		int rootValue=preorder[startPre];
		TreeNode root = new TreeNode(rootValue);
		root.left = root.right = null;
		System.out.println("前序遍历第一个节点"+preorder[startPre]);
		if (preorder[startPre] == preorder[endPre] )
			if(inorder[startIn] == inorder[endIn]) {
			return root;
		} else {
			System.out.println("非法输入");
		}
		//在中序遍历中找到根节点
		int rootInorderIndex=startIn;
		while(startIn<=endIn && inorder[rootInorderIndex]!=rootValue){
			rootInorderIndex++;
		}
		int leftLen=rootInorderIndex-startIn;
		int leftPreEnd=startPre+leftLen;
		if(leftLen>0){
			root.left=buildTreeCore(preorder,inorder,startPre+1,leftPreEnd,startIn,rootInorderIndex-1);
		}
		if(leftLen<endPre-startPre){
			root.right=buildTreeCore(preorder,inorder,leftPreEnd+1,endPre,rootInorderIndex+1,endIn);	
		}
		return root;
	}
	public static void main(String[] args) {
		L105ConstructBinaryTreefromPreorderandInorderTraversal cc= new L105ConstructBinaryTreefromPreorderandInorderTraversal();
		int[] preorder1={1,2,4,7,3,5,6,8};
		int[] inorder1={4,7,2,1,5,3,8,6};
		int[] preorder={1,2};
		int[] inorder={2,1};
		cc.buildTree(preorder, inorder);
	}
}
面试题6-2:重建二叉树,由二叉树的中序遍历和后序遍历重建二叉树——Leetcode 106.Construct Binary Tree from Inorder and Postorder Traversal
package medium;
public class L106ConstructBinaryTreefromInorderandPostorderTraversal {
	/*
	 * 根据前序遍历与中序遍历重建一个二叉树
	 */
	public TreeNode buildTree(int[] inorder, int[] postorder) {
		if (postorder == null || inorder == null) {
			return null;
		}
		int length = inorder.length;
		if (length == 0) {
			TreeNode root = null;
			return root;
		}
		// System.out.println(length);
		int startPost = 0;
		int endPost = length - 1;
		int startIn = 0;
		int endIn = length - 1;
		return buildTreeCore(inorder, postorder, startIn, endIn, startPost, endPost);
	}
	public TreeNode buildTreeCore(int[] inorder, int[] postorder, int startIn, int endIn, int startPost, int endPost) {
		// 后序遍历的最后一个结点为根节点。
		int rootValue = postorder[endPost];
		TreeNode root = new TreeNode(rootValue);
		root.left = root.right = null;
		if (postorder[startPost] == postorder[endPost]) {
			if (inorder[startIn] == inorder[endIn]) {
				return root;
			} else {
				System.out.println("非法输入");
			}
		}
		// 在中序遍历中找到根节点
		int rootInorderIndex = startIn;
		while (startIn <= endIn && inorder[rootInorderIndex] != rootValue) {
			rootInorderIndex++;
		}
		int leftLen = rootInorderIndex - startIn;
		int leftPostEnd = startPost + leftLen-1;
		if (leftLen > 0) {
			root.left = buildTreeCore(inorder, postorder, startIn, rootInorderIndex - 1, startPost, leftPostEnd);
		}
		if (leftLen < endPost - startPost) {
			root.right = buildTreeCore(inorder, postorder, rootInorderIndex + 1, endIn, leftPostEnd + 1, endPost - 1);
		}
		return root;
	}
	public static void main(String[] args) {
		L106ConstructBinaryTreefromInorderandPostorderTraversal cc = new L106ConstructBinaryTreefromInorderandPostorderTraversal();
		int[] inorder = { 4, 7, 2, 1, 5, 3, 8, 6 };
		int[] postorder={ 7, 4, 2, 5, 8, 6, 3, 1 };
		cc.buildTree( inorder,postorder);
	}
}
面试题7 用两个栈,实现队列-----Leetcode 232题 Implement Queue using Stacks
package easy;
import java.util.Stack;
public class L232ImplementQueueUsingStacks {
	Stack<Integer> queue = new Stack();
	public void push(int x) {
		Stack<Integer> stack = new Stack();
		while (!queue.empty()) {
			stack.push(queue.pop());
		}
		queue.push(x);
		while (!stack.empty()) {
			queue.push(stack.pop());
		}
	}
	public int pop() {
		return queue.pop();
	}
	public int peek() {
		return queue.peek();
	}
	public boolean empty() {
		return queue.empty();
	}
	public static void main(String[] args) {
		MyQueue obj = new MyQueue();
		obj.push(2);
		obj.push(1);
		obj.push(3);
		obj.push(4);
		int param_2 = obj.pop();
		int param_3 = obj.peek();
		boolean param_4 = obj.empty();
		System.out.println("pop:"+param_2);
		System.out.println("peek:"+param_3);
		System.out.println("empty:"+param_4);
	}
}
面试题7-2 用两个队列,实现栈-----L225题 Implement Stacks using Queue
package easy;
import java.util.LinkedList;
import java.util.Queue;
public class L225_ImplementStackUsingQueues {
	/*
	 * 用两个栈实现队列 先入先出
	 * 
	 * Implement the following operations of a stack using queues.
	 */
	Queue<Integer> queue1 = new LinkedList<Integer>();
	Queue<Integer> queue2 = new LinkedList<Integer>();
      // push(x) -- Push element x onto stack.
	public void push(int x) {
		if (queue1.isEmpty() && queue2.isEmpty()) {
			queue1.add(x);
		} else if (!queue1.isEmpty()) {
			queue1.add(x);
		} else {
			queue2.add(x);
		}
	}
	// pop() -- Removes the element on top of the stack.
	public int pop() {
		int size1 = queue1.size();
		int size2 = queue2.size();
		if (size1 > 0) {
			while (size1 > 1) {
				queue2.add(queue1.poll());
				size1--;
			}
			return queue1.poll();
		} else if (size2 > 0) {
			while (size2 > 1) {
				queue1.add(queue2.poll());
				size2--;
			}
			return queue2.poll();
		} else {
			System.out.println("栈为空");
		}
		return 0;
	}
	// top() -- Get the top element.
	public int top() {
		int size1 = queue1.size();
		int size2 = queue2.size();
		int x=0;
		if (size1 > 0) {
			while (size1 > 1) {
				queue2.add(queue1.poll());
				size1--;
			}
			x=queue1.peek();
			 queue2.add(queue1.poll());
		} else if (size2 > 0) {
			while (size2 > 1) {
				queue1.add(queue2.poll());
				size2--;
			}
			x=queue2.peek();
			queue1.add(queue2.poll());
		} else {
			System.out.println("栈为空");
		}
		return x;
	}
	// empty() -- Return whether the stack is empty.
	public boolean empty() {
		int size = queue1.size() + queue2.size();
		return size > 0 ? false : true;
	}
	public static void main(String[] args) {
		//["MyStack","push","push","push","top",
		//"pop","top","pop","top","empty","pop","empty"]
		L225_ImplementStackUsingQueues obj = new L225_ImplementStackUsingQueues();
		obj.push(1);
		System.out.println("top1:" +obj.top());
		obj.push(2);
		System.out.println("top2:" +obj.top());
		obj.push(3);
		System.out.println("top3:" +obj.top());
		System.out.println("pop:" +obj.pop() );
		System.out.println("top:" +obj.top());
		System.out.println("pop:" +obj.pop() );
		System.out.println("top:" +obj.top());
		System.out.println("empty:" + obj.empty());
		System.out.println("pop:" +obj.pop() );
		System.out.println("empty:" + obj.empty());
	}
}
面试题8:旋转数组的最小数字—leetcode 153题 Find Minimum in Rotated Sorted Array
class Solution {
    public int findMin(int[] nums) {
      int min=nums[0];
		int len=nums.length;
		int low=0;
		int high=len-1;
		int mid=(low+high)/2;
		if(nums[low]<nums[high]){
			return nums[low];
		}
		while(low<=high){
			if(high-low==1 || high==low){
				System.out.println("min:"+min);
				return nums[high]<=nums[high] ? nums[high]:nums[low];
			}
			if(nums[mid]>nums[high]){
				min=nums[high];
				low=mid;
			}else{
				min=nums[mid];
				high=mid;
			}
            mid=(low+high)/2;
		}
		return min;
  
    }
}
面试题9:菲波那切数列
package jianzhiOffer;
public class I9Fibonacci {
	public int calFi1(int n) {
		// 递归
		if (n == 0) {
			return 0;
		}
		if (n == 1) {
			return 1;
		}
		return calFi1(n - 1) + calFi1(n - 2);
	}
	public int calFi2(int n) {
		// 循环
		if (n == 0) {
			return 0;
		}
		if (n == 1) {
			return 1;
		}
		int one = 0;
		int two = 1;
		int sum = 0;
		for (int i = 2; i <= n; i++) {
			sum = one + two;
			one = two;
			two = sum;
		}
		return sum;
	}
	public static void main(String[] args) {
		I9Fibonacci cc = new I9Fibonacci();
		int sum1 = cc.calFi1(3);
		int sum2 = cc.calFi2(3);
		System.out.println(sum1 + ":" + sum2);
	}
}
面试题10:二进制中1的个数——剑指OfferP78 ~~~L191题 Number of 1 Bits
package easy;
public class L191NumberOf1Bits {
	 // you need to treat n as an unsigned value
	//将一个整数减去一个1,这个整数的二进制变化是:最右面的1变为0,这一位之后的所有位变为1.
	//如1100 减去一为1011.
	//减1之后的整数与原来的整数做与运算,会把原整数最右面一位变为0.
	//1011 & 1100=1000
    public int hammingWeight(int n) {
        int number=0;
        while(n!=0){
        	number++;
        	n=(n-1)&n;
        }
        return number;
    }
//解法2 较慢的解法,如果n&1结果为1这表示n的最后一位为1,count++;之后将1左移,判断前面位。
 public int solu2(int n){
         int number=0;
         int flag=1;
         while(flag!=0){
             if((n & flag) !=0){
                 number++;
             }
             flag=flag<<1;
         }
         return number;
    }
    public static void main(String[] args) {
		L191NumberOf1Bits cc= new L191NumberOf1Bits();
		int number=cc.hammingWeight(2);
		System.out.println(number);
	}
}
面试题11:数值的整数次方——Leetcde 50.Pow(x, n) 详解
面试题14:调整数组顺序使奇数位于偶数前面——Leetcode 328. Odd Even Linked List 详解
面试题15:链表中倒数第k个结点~~~~Leetcode 19. Remove Nth Node From End of List.详解
面试题16:反转链表~~~~~Leetcode 92. Reverse Linked List II 详解
Leetcode 206.Reverse Linked List 详解
面试题17:合并两个排序的链表~~~~~Leetcode 21. Merge Two Sorted Lists 详解
面试题20:顺时针打印矩阵~~~~Leetcode 54.Spiral Matrix 详解
59题 Spiral MatrixII 详解
面试题25:二叉树中和为某一值的路径~~~~Leetcode 112 Path Sum 详解
Leetcode 113 PathSumII 详解
面试题29:数组中出现次数超过一半的数字~~~~~Leetcode 169.Majority Element 详解
面试题33:把数组排成最小的数~~~~~Leetcode 179.Largest Number 详解
面试题37:两个链表中的第一个公共节点~~~~~Leetcode 160. Intersection of Two Linked Lists 详解
面试题39:二叉树的深度~~~~~Leetcode 110. Balanced Binary Tree 详解
面试题50:把字符串变成整数(atoi函数)~~~~Leetcode 8.String to Integer (atoi) 详解
面试题51:树中两个结点的最低公共祖先~~~~~~Leetcode 235. Lowest Common Ancestor of a Binary Search Tree详解
Leetcode 236.Lowest Common Ancestor of a Binary Tree 详解
 
                    
                     
                    
                 
                    
                
 
 
                
            
         
         浙公网安备 33010602011771号
浙公网安备 33010602011771号