八大排序算法
1.选择排序
java
//selectSort 每次将当前元素替换为后面最小的元素
//Java public static void selectSort(int [] nums){ int N = nums.length; for(int i = 0; i < N; i ++){ int min = i; for(int j = i + 1; j < N; j ++){ if(nums[j] < nums[min]) min = j; } int t = nums[i]; nums[i] = nums[min]; nums[min] = t; } }
python
def selection_sort(lst):
for i in range(len(lst) - 1):
min_index = i
for j in range(i + 1, len(lst)):
if lst[j] < lst[min_index]:
min_index = j
lst[i], lst[min_index] = lst[min_index], lst[i]
return lst
2.插入排序
java
//insertSort 每次将当前元素插入到前面已经排好序的元素中 public static void insertSort(int[] a){ int N = a.length; for (int i = 0; i < N; i++) { int temp = a[i]; int j = i; for (; j > 0 && a[j-1] > temp; j--) { a[j] = a[j-1]; } a[j] = temp; } }
python
def insertion_sort(lst):
for i in range(len(lst) - 1):
cur_num, pre_index = lst[i+1], i
while pre_index >= 0 and cur_num < lst[pre_index]:
lst[pre_index + 1] = lst[pre_index]
pre_index -= 1
lst[pre_index + 1] = cur_num
return lst
3.希尔排序
java
//shellSort 将数组分组,并不断减小分组的步长直到为1,每次分组均进行插入排序 public static void shellSort(int[] a){ for (int step = a.length/2; step > 0; step/=2) { for (int i = step; i < a.length; i++) { int temp = a[i]; int j = i; for (; j >= step && a[j-step] > temp ; j-=step) { a[j] = a[j-step]; } a[j] = temp; } } }
python
def shell_sort(lst):
n = len(lst)
gap = n // 2
while gap > 0:
for i in range(gap, n):
for j in range(i, gap - 1, -gap):
if lst[j] < lst[j - gap]:
lst[j], lst[j - gap] = lst[j - gap], lst[j]
else:
break
gap //= 2
return lst
4.归并排序
java
//mergeSort 递归 对两个有序节点序列进行合并来实现排序,分治思想 //分解的方法 public void mergeSort(int[] arr,int left,int right){ //如果左边索引小于右边就可以一直分,l=r时,就是分到只剩一个数了 if(left<right){ int mid = (left + right) / 2;//左少右多 //向左递归分解 mergeSort(arr,left,mid); //向右递归分解 mergeSort(arr,mid+1,right); //合并 merge(arr,left,mid,right); } } //合并的方法 /** * * @param arr 待排序的原始数组 * @param left 左边有序序列的初始索引 * @param mid 中间索引 * @param right 右边结束索引 * @return */ public void merge(int[] arr, int left,int mid,int right) { int i = left; int j = mid +1; int[] temp = new int[right-left+1];//中转数组 int t = 0;//temp数组的当前索引 //合并数组,比较找最大 while (i<=mid && j<=right){ if(arr[i]<=arr[j])temp[t++] = arr[i++]; else temp[t++] = arr[j++]; } while (i<=mid) temp[t++] = arr[i++]; while (j<=right) temp[t++] = arr[j++]; //将temp数组拷贝到arr数组,并不是每次都拷贝所有 t = 0; while (left<=right) arr[left++] = temp[t++]; }
python
def merge_sort(lst):
def merge(left,right):
i = 0
j = 0
result = []
while i < len(left) and j < len(right):
if left[i] <= right[j]:
result.append(left[i])
i += 1
else:
result.append(right[j])
j += 1
result = result + left[i:] + right[j:]
return result
n = len(lst)
if n <= 1:
return lst
mid = n // 2
left = merge_sort(lst[:mid])
right = merge_sort(lst[mid:])
return merge(left,right)
5.冒泡排序
java
//bubbleSort n-1遍历,每次找到未排序数组的最大值 public void bubbleSort(int[] arr){ for (int i = arr.length-1; i >= 0; i--) { for (int j = 0; j < i; j++) { if(arr[j]>arr[j+1]){ int temp = arr[j]; arr[j] = arr[j+1]; arr[j+1] = temp; } } } }
python
def bubble_sort(lst):
n = len(lst)
for i in range(n):
for j in range(1, n - i):
if lst[j - 1] > lst[j]:
lst[j - 1], lst[j] = lst[j], lst[j - 1]
return lst
6.基数排序
java
//radixSort 按位数进行排序,借助桶bucket进行分配与收集 public void radixSort(int[] arr){ int max = 0; for (int i : arr) { if(i>max) max = i; } int count = (max+"").length(); for (int i = 1; i <= count; i++) { //分配 int[][] bucket = new int[10][arr.length]; //bucketCount用于统计该桶中元素的数量 int[] bucketCount = new int[10]; for (int value : arr) { bucket[value % (10 * i)][bucketCount[value % (10 * i)]++] = value; } //收集 int k = 0; for (int j = 0; j < 10; j++) { //如果桶中有数据,放入数组 if(bucketCount[j]!=0) { //循环该桶,取出元素到arr中,每取一个元素,桶中元素-1 while (bucketCount[j]!=0) arr[k++] = bucket[j][--bucketCount[j]]; } } } }
python
# LSD Radix Sort
def radix_sort(lst):
mod = 10
div = 1
mostBit = len(str(max(lst)))
buckets = [[] for row in range(mod)]
while mostBit:
for num in lst:
buckets[num // div % mod].append(num)
i = 0
for bucket in buckets:
while bucket:
lst[i] = bucket.pop(0)
i += 1
div *= 10
mostBit -= 1
return lst
7.堆排序
java
//heapSort 构建大顶堆或者小顶堆,将堆顶元素与堆尾元素交换后再调整,如此反复 public void heapSort(int[] arr){ //构建大顶堆 k为最后一个非叶子节点,逐渐-1,即从下向上,从右往左 for(int k = arr.length/2 - 1;k>=0;k--){ adjustHeap(arr,k,arr.length); } //排序 交换+调整 int temp =0; for (int i = arr.length-1; i >= 0; i--) { temp =arr [0]; arr[0] = arr[i]; arr[i] = temp; adjustHeap(arr,0,i); } } /** * * @param arr 待调整数组 * @param i 非叶子节点在数组中的索引 * @param length 对多少个元素进行调整 */ public void adjustHeap(int[] arr,int i,int length){ int temp = arr[i];//取出当前非叶子叶结点的值 //k为当前节点的左子节点 for(int k = 2*i+1;k<length;k=2*k+1){ if(k+1<length && arr[k+1]>arr[k]){//右子节点大于左子节点 k++;//k指向右子节点 } if(arr[k]>temp){//如果当前节点大于父节点就交换 arr[i] = arr[k]; i =k;//!!!!!!精髓,因为该子节点值大小发生了改变,可能会使其子根堆发生改变,索引要调整其子根堆 }else { break;//否则直接退出,因为其后面的节点一定满足堆定义 } } arr[i] = temp; }
python
def heap_sort(lst):
def adjust_heap(lst, i, size):
left_index = 2 * i + 1
right_index = 2 * i + 2
largest_index = i
if left_index < size and lst[left_index] > lst[largest_index]:
largest_index = left_index
if right_index < size and lst[right_index] > lst[largest_index]:
largest_index = right_index
if largest_index != i:
lst[largest_index], lst[i] = lst[i], lst[largest_index]
adjust_heap(lst, largest_index, size)
def built_heap(lst, size):
for i in range(len(lst)//2)[::-1]:
adjust_heap(lst, i, size)
size = len(lst)
built_heap(lst, size)
for i in range(len(lst))[::-1]:
lst[0], lst[i] = lst[i], lst[0]
adjust_heap(lst, 0, i)
return lst
8.快速排序
java
//quickSort 每次选择一个元素并且将整个数组以这个元素分为两部分,小于该元素的放右边,大于该元素的放左边
public void quickSort(int[] arr,int l,int r){
if(l<r){ //跳出递归的条件
//partition就是划分操作,将arr划分成满足条件的两个子表
int pivotpos = partition(arr,l,r);
//依次对左右两个子表进行递归排序
quickSort(arr,l,pivotpos);
quickSort(arr,pivotpos+1,r);
}
}
public int partition(int[] arr,int l,int r){
//以当前数组的最后一个元素作为中枢pivot,进行划分
int pivot = arr[r];
while (l<r){
while (l<r && arr[l]<pivot) l++;
arr[r] = arr[l];//将比中枢值大的移动到右端r处 由于r处为中枢或者该位置值已经被替换到l处,所以直接可以替换
while (l<r && arr[r]>=pivot) r--;
arr[l] = arr[r];//将比中枢值小的移动到左端l处 由于前面l处的值已经换到r处,所以该位置值也可以替换掉
}
//l==r时,重合,这个位置就是中枢的最终位置
arr[l] = pivot;
//返回存放中枢的最终位置
return l;
}
python
def quick_sort(lst):
n = len(lst)
if n <= 1:
return lst
baseline = lst[0]
left = [lst[i] for i in range(1, len(lst)) if lst[i] < baseline]
right = [lst[i] for i in range(1, len(lst)) if lst[i] >= baseline]
return quick_sort(left) + [baseline] + quick_sort(right)

浙公网安备 33010602011771号