1 import tensorflow as tf
2 import numpy as np
3 # const = tf.constant(2.0, name='const')
4 # b = tf.placeholder(tf.float32, [None, 1], name='b')
5 # # b = tf.Variable(2.0, dtype=tf.float32, name='b')
6 # c = tf.Variable(1.0, dtype=tf.float32, name='c')
7 #
8 # d = tf.add(b, c, name='d')
9 # e = tf.add(c, const, name='e')
10 # a = tf.multiply(d, e, name='a')
11 # init = tf.global_variables_initializer()
12 #
13 # print(a)
14 # with tf.Session() as sess:
15 # sess.run(init)
16 # ans = sess.run(a, feed_dict={b: np.arange(0, 10)[:, np.newaxis]})
17 # print(a)
18 # print(ans)
19
20 from tensorflow.examples.tutorials.mnist import input_data
21 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # 载入数据集
22
23 learning_rate = 0.5 # 学习率
24 epochs = 10 # 训练10次所有的样本
25 batch_size = 100 # 每批训练的样本数
26
27 x = tf.placeholder(tf.float32, [None, 784]) # 为训练集的特征提供占位符
28 y = tf.placeholder(tf.float32, [None, 10]) # 为训练集的标签提供占位符
29
30 W1 = tf.Variable(tf.random_normal([784, 300], stddev=0.03), name='W1') # 初始化隐藏层的W1参数
31 b1 = tf.Variable(tf.random_normal([300]), name='b1') # 初始化隐藏层的b1参数
32 W2 = tf.Variable(tf.random_normal([300, 10], stddev=0.03), name='W2') # 初始化全连接层的W1参数
33 b2 = tf.Variable(tf.random_normal([10]), name='b2') # 初始化全连接层的b1参数
34
35 hidden_out = tf.add(tf.matmul(x, W1), b1) # 定义隐藏层的第一步运算
36 hidden_out = tf.nn.relu(hidden_out) # 定义隐藏层经过激活函数后的运算
37
38 y_ = tf.nn.softmax(tf.add(tf.matmul(hidden_out, W2), b2)) # 定义全连接层的输出运算
39
40 y_clipped = tf.clip_by_value(y_, 1e-10, 0.9999999)
41 cross_entropy = -tf.reduce_mean(tf.reduce_sum(y * tf.log(y_clipped) + (1 - y) * tf.log(1 - y_clipped), axis=1))
42 # 交叉熵
43
44 optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cross_entropy)
45 # 梯度下降优化器,传入的参数是交叉熵
46
47 init = tf.global_variables_initializer() # 所有参数初始化
48
49 correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) # 返回true|false
50 accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 将true转化为1,false转化为0
51
52 # 开始训练
53 with tf.Session() as sess:
54 sess.run(init)
55 total_batch = int(len(mnist.train.labels) / batch_size) # 计算每个epoch要迭代几次
56 for epoch in range(epochs):
57 avg_cost = 0
58 for i in range(total_batch):
59 batch_x, batch_y = mnist.train.next_batch(batch_size=batch_size)
60 _, c = sess.run([optimizer, cross_entropy], feed_dict={x: batch_x, y: batch_y})
61 # 其实上面这一步只需要跑optimizer这个优化器就好了,因为交叉熵也会同时跑。
62 # 但是我们想要得到交叉熵的值来作为损失函数,所以还需要跑一个交叉熵。
63 avg_cost += c / total_batch
64 print("Epoch:", (epoch + 1), "cost = ", "{:.3f}".format(avg_cost)) # 这是每训练完所有样本得到的损失值
65 print(sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels}))
66 # 因为之前的计算已经把中间参数计算出来了,所以这里只用最后的计算测试集就行了