机器人路径规划与避障避碰算法实现
1. 基于状态改变的路径规划算法
这种算法借鉴电路中元件状态改变的现象,将动态障碍物类比为外部激励,通过实时更新机器人的状态来实现避障。
% 参数设置
startPos = [0, 0]; % 起始位置
goalPos = [10, 10]; % 目标位置
obstacles = [3, 3, 1; 7, 7, 1]; % 障碍物位置和半径
robotRadius = 0.5; % 机器人半径
stepSize = 0.1; % 每步移动距离
% 初始化路径
path = startPos;
currentPos = startPos;
% 路径规划主循环
while norm(currentPos - goalPos) > robotRadius
% 计算目标方向向量
goalVector = goalPos - currentPos;
goalVector = goalVector / norm(goalVector);
% 检测障碍物
for i = 1:size(obstacles, 1)
obsPos = obstacles(i, 1:2);
obsRadius = obstacles(i, 3);
distance = norm(currentPos - obsPos);
if distance < obsRadius + robotRadius
% 计算避障方向
obsVector = currentPos - obsPos;
obsVector = obsVector / norm(obsVector);
goalVector = obsVector; % 临时将避障方向作为目标方向
end
end
% 更新位置
currentPos = currentPos + stepSize * goalVector;
path = [path; currentPos];
end
% 绘制路径
figure;
plot(path(:,1), path(:,2), 'b', 'LineWidth', 2);
hold on;
plot(startPos(1), startPos(2), 'go', 'MarkerSize', 10); % 起始点
plot(goalPos(1), goalPos(2), 'ro', 'MarkerSize', 10); % 目标点
for i = 1:size(obstacles, 1)
viscircles(obstacles(i, 1:2), obstacles(i, 3), 'EdgeColor', 'k'); % 障碍物
end
axis equal;
xlabel('X');
ylabel('Y');
title('基于状态改变的路径规划');
2. 动态窗口算法(DWA)
动态窗口算法是一种基于采样和动态规划的局部路径规划方法,适用于动态环境。
% 参数设置
startPos = [0, 0]; % 起始位置
goalPos = [10, 10]; % 目标位置
obstacles = [3, 3, 1; 7, 7, 1]; % 障碍物位置和半径
robotRadius = 0.5; % 机器人半径
stepSize = 0.1; % 每步移动距离
velocityRange = [-1, 1]; % 速度范围
angularVelocityRange = [-pi/4, pi/4]; % 角速度范围
predictionTime = 5; % 预测时间
% 初始化路径
path = startPos;
currentPos = startPos;
currentAngle = 0;
% 路径规划主循环
while norm(currentPos - goalPos) > robotRadius
% 生成候选速度
velocities = linspace(velocityRange(1), velocityRange(2), 10);
angularVelocities = linspace(angularVelocityRange(1), angularVelocityRange(2), 10);
bestScore = -Inf;
bestVelocity = 0;
bestAngularVelocity = 0;
% 评估每个候选速度
for v = velocities
for w = angularVelocities
% 预测位置
predictedPos = currentPos;
predictedAngle = currentAngle;
for t = 1:predictionTime
predictedPos = predictedPos + [v * cos(predictedAngle), v * sin(predictedAngle)];
predictedAngle = predictedAngle + w;
% 检测碰撞
collision = false;
for i = 1:size(obstacles, 1)
obsPos = obstacles(i, 1:2);
obsRadius = obstacles(i, 3);
if norm(predictedPos - obsPos) < obsRadius + robotRadius
collision = true;
break;
end
end
if collision
break;
end
end
if ~collision
% 计算评分
goalVector = goalPos - predictedPos;
goalVector = goalVector / norm(goalVector);
score = dot(goalVector, [cos(predictedAngle), sin(predictedAngle)]);
if score > bestScore
bestScore = score;
bestVelocity = v;
bestAngularVelocity = w;
end
end
end
end
% 更新位置和角度
currentPos = currentPos + [bestVelocity * cos(currentAngle), bestVelocity * sin(currentAngle)];
currentAngle = currentAngle + bestAngularVelocity;
path = [path; currentPos];
end
% 绘制路径
figure;
plot(path(:,1), path(:,2), 'b', 'LineWidth', 2);
hold on;
plot(startPos(1), startPos(2), 'go', 'MarkerSize', 10); % 起始点
plot(goalPos(1), goalPos(2), 'ro', 'MarkerSize', 10); % 目标点
for i = 1:size(obstacles, 1)
viscircles(obstacles(i, 1:2), obstacles(i, 3), 'EdgeColor', 'k'); % 障碍物
end
axis equal;
xlabel('X');
ylabel('Y');
title('动态窗口算法路径规划');
3. 基于运动显著性的动态环境避碰方法
这种方法利用动态物体的运动显著性信息,通过B样条插值方法预测动态物体的未来运动状态,并结合非线性模型预测控制(NMPC)实现避障。
% 参数设置
startPos = [0, 0]; % 起始位置
goalPos = [10, 10]; % 目标位置
dynamicObstacles = [3, 3, 1, [0.1, 0.1]; 7, 7, 1, [-0.1, -0.1]]; % 动态障碍物位置、半径和速度
robotRadius = 0.5; % 机器人半径
stepSize = 0.1; % 每步移动距离
predictionTime = 5; % 预测时间
% 初始化路径
path = startPos;
currentPos = startPos;
% 路径规划主循环
while norm(currentPos - goalPos) > robotRadius
% 预测动态障碍物位置
predictedObstacles = dynamicObstacles;
for i = 1:size(dynamicObstacles, 1)
predictedObstacles(i, 1:2) = predictedObstacles(i, 1:2) + predictedObstacles(i, 4:5) * predictionTime;
end
% 计算目标方向向量
goalVector = goalPos - currentPos;
goalVector = goalVector / norm(goalVector);
% 检测碰撞
collision = false;
for i = 1:size(predictedObstacles, 1)
obsPos = predictedObstacles(i, 1:2);
obsRadius = predictedObstacles(i, 3);
if norm(currentPos - obsPos) < obsRadius + robotRadius
collision = true;
break;
end
end
if collision
% 计算避障方向
obsVector = currentPos - obsPos;
obsVector = obsVector / norm(obsVector);
goalVector = obsVector; % 临时将避障方向作为目标方向
end
% 更新位置
currentPos = currentPos + stepSize * goalVector;
path = [path; currentPos];
end
% 绘制路径
figure;
plot(path(:,1), path(:,2), 'b', 'LineWidth', 2);
hold on;
plot(startPos(1), startPos(2), 'go', 'MarkerSize', 10); % 起始点
plot(goalPos(1), goalPos(2), 'ro', 'MarkerSize', 10); % 目标点
for i = 1:size(dynamicObstacles, 1)
viscircles(dynamicObstacles(i, 1:2), dynamicObstacles(i, 3), 'EdgeColor', 'k'); % 动态障碍物
end
axis equal;
xlabel('X');
ylabel('Y');
title('基于运动显著性的动态环境避碰');
参考代码 机器人的路径规划,实现避障避碰 www.youwenfan.com/contentcnk/101153.html
浙公网安备 33010602011771号