POJ 3278 Catch That Cow
Catch That Cow
| Time Limit: 2000MS | Memory Limit: 65536K | |
| Total Submissions: 48127 | Accepted: 15077 |
Description
Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.
* Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute
* Teleporting: FJ can move from any point X to the point 2 × X in a single minute.
If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
Input
Line 1: Two space-separated integers: N and K
Output
Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.
Sample Input
5 17
Sample Output
4
Hint
The fastest way for Farmer John to reach the fugitive cow is to move along the following path: 5-10-9-18-17, which takes 4 minutes.
算法分析:bfs的一道搜索题目,一开始我以为应该是去找到某种 统一的算法公式来计算从 “起点数字” 到“终点数字”的最小步骤数,
可是想了半天都没有思路,最后想到了暴力解决问题。
可这不是bfs的算法题吗?
不错,并非是普通的线性暴力搜索,需要用到bfs的思想。仔细分析便可知道,计算机程序做不到动态的决定从当前的这一
步该怎样继续走下去 所达到的结果最优!(只限在本题)
所以我们的思路就是:从“当前节点”出发,可以到到其余3个节点,这三个节点又可以分别到达3个节点,加起来就是9个点了,
当然这9个点可能会出现重复的点,也就是说,如果该点已经被访问过了,也就没有再访问的必要了。所以要用到标记术数组。
如此继续下去,判断每一个可到达的点是不是终点即可,如果该点是 终点,返回 到达“当前节点”的步数统计数(用数组来记录)。
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <queue>
#include <algorithm>
using namespace std;
int vis[101000], dis[101000];
int bfs(int n, int k)
{
queue<int>q; //简历队列
q.push(n); //将起点入队列
vis[n]=1; //标记起点被访问
dis[n]=0; //此时起点到自身的步数为0
int curpos; //当前节点
while(!q.empty() ) //判断队列不为空
{
curpos=q.front(); //取出当前队首元素
q.pop();
if(curpos == k) //如果等于终点
{
return dis[curpos]; //返回步数
}
else
{
if(curpos-1>=0 && curpos<=100000 && vis[curpos-1]==0 ) //判断此点是否可行
{
q.push(curpos-1); //如果行,进入队列 待命
vis[curpos-1]=1; //标记该点被访问,以后不要被重复访问了
dis[curpos-1]=dis[curpos]+1; // 到达此点的步数 == 当前点的步数+1
}
if(curpos+1>=0 && curpos+1<=100000 && vis[curpos+1]==0 ) //类推
{
q.push(curpos+1);
vis[curpos+1]=1;
dis[curpos+1]=dis[curpos]+1;
}
if(curpos*2>=0 && curpos*2<=100000 && vis[curpos*2]==0 ) //类推
{
q.push(curpos*2);
vis[curpos*2]=1;
dis[curpos*2]=dis[curpos]+1;
}
}
}
return 0;
}
int main()
{
int n, k;
while(scanf("%d %d", &n, &k)!=EOF)
{
memset(vis, 0, sizeof(vis));
memset(dis, 0, sizeof(dis));
printf("%d\n", bfs(n, k));
}
return 0;
}
第二次的写法:
#include <iostream>
#include <string>
#include <stdio.h>
#include <string.h>
#include <queue>
#define INF 99999999
using namespace std;
int vis[100001];
int dis[100001];
int bfs(int n, int k)
{
memset(vis, 0, sizeof(vis));
memset(dis, 0, sizeof(dis));
queue<int>q;
q.push(n);
vis[n]=1;
dis[1]=0;
int dd;
while(!q.empty())
{
dd=q.front();
q.pop();
if(dd==k)
{
return dis[dd];
}
else
{
if( !vis[dd+1] && dd+1>=0 && dd+1<=100000 )
{
q.push(dd+1);
dis[dd+1]=dis[dd]+1;
vis[dd+1]=1;
}
if( !vis[dd-1] && dd-1>=0 && dd-1<=100000 )
{
q.push(dd-1);
dis[dd-1]=dis[dd]+1;
vis[dd-1]=1;
}
if(!vis[dd*2] && dd*2>=0 && dd*2<=100000 )
{
q.push(dd*2);
dis[dd*2]=dis[dd]+1;
vis[dd*2]=1;
}
}
}
return 0; // 开始忘记 写这个指令了,跑出来的结果很像随机 结果! 不知道为什么,加上之后就运行正确了 !
}!
int main()
{
int n, k;
int dd;
while(cin>>n>>k)
{
dd = bfs(n, k);
cout<<dd<<endl;
}
return 0;
}

浙公网安备 33010602011771号