【CF962E】Byteland, Berland and Disputed Cities

Portal! --->

几句话题意

  数轴上面有三种点(B点,R点,P点),现在要将其中的某些点连起来,满足将所有B点去掉之后,所有P点和R点都连通&将所有R点去掉之后,所有B点和P点都连通两个条件,连接两点的代价为数轴上距离,求最小代价(读入按照数轴上位置从小到大的顺序)


Solution

  这题。。其实是个特别神秘的贪心

  首先有个特别直接的想法,就是。。所有的B点和它的前一个B点或者P点连,所有的R点和它的前一个R点或者P点连,P点和前一个R点和前一个B点连,这样就一定能保证满足那两个条件并且不会绕多太多路

  但是,画一下图会发现,其实还有一种连法是将一个P点和它的前一个P点连起来,这样这两个P点之间就可以省掉两条边(B与B连的一条,R与R连的一条)弱弱的我一开始完全没想到这个Q^Q

  那么最优解应该就是在这两种情况中取较小的那个就好了

  

  具体实现的话,因为保证读入是按顺序的,那就一开始先全部按照第一种方法连,如果当前有两个P点那么就与第二种连法取最优解就好了,中间稍微记录一下边的最大值即可

  代码大概长这个样子

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int MAXN=2*(1e5)+10,inf=2147483647;
ll ans;
int n,lastR,lastB,lastP,mxR,mxB;

int main(){
#ifndef ONLINE_JUDGE
	freopen("a.in","r",stdin);
#endif
	int x;
	char c;
	scanf("%d",&n);
	lastR=lastB=lastP=-inf;
	mxR=mxB=0;
	for (int i=1;i<=n;++i){
		scanf("%d %c\n",&x,&c);
		if (c=='R'||c=='P'){
			if (lastR!=-inf) 
				ans+=x-lastR,mxR=max(mxR,x-lastR);
			lastR=x; 
		}
		if (c=='B'||c=='P'){
			if (lastB!=-inf)
				ans+=x-lastB,mxB=max(mxB,x-lastB);
			lastB=x;
		}
		if (c=='P'){
			if (lastP!=-inf)
				ans+=min(0,x-lastP-mxR-mxB);
			lastP=x; mxR=mxB=0;
		}
	}
	printf("%I64d\n",ans);
}
posted @ 2018-04-16 22:22  yoyoball  阅读(349)  评论(0)    收藏  举报