基于AQS实现一个自定义的锁

  java并发编程中,锁自然其中的必须的产物。而在java的容器框架中,也提供了满足各种场景的锁。但是,有一个共性就是,他们都是基于AbstractQueuedSynchronizer(AQS)。可见AQS的重要性!

  下面,让我们也来基于AQS实现一个自己的锁!

public class TwinsLockTest {

    @Test
    public void testTwinsLock() {
        final Lock lock = new TwinsLock();
        class Worker extends Thread {
            @Override
            public void run() {
                while (true) {
                    // 获取锁
                    lock.lock();
                    try {
                        SleepUtils.second(1);
                        System.out.println(System.currentTimeMillis() + " " + Thread.currentThread().getName());
                        SleepUtils.second(1);
                    }
                    finally {
                        // 释放锁
                        lock.unlock();
                    }
                }
            }
        }
        // 开10个线程运行worker, 如果没有锁,应该是几乎同时很快完成
        // 但 TwinsLock 只允许同时有两个线程获得锁运行
        for (int i = 0; i < 10; i++) {
            Worker w = new Worker();
            w.setDaemon(true);
            w.start();
        }
        // 每隔1s换行
        for (int i = 0; i < 10; i++) {
            SleepUtils.second(1);
            System.out.println();
        }

    }
}

/**
 * 双资源锁
 */
class TwinsLock implements Lock {
    private final Sync sync = new Sync(2);
    private static final class Sync extends AbstractQueuedSynchronizer {
        private static final long serialVersionUID = -8540764104913403569L;

        Sync(int count) {
            if (count <= 0) {
                throw new IllegalArgumentException("锁资源数不能为负数~");
            }
            // 调用 AQS 设置资源总数,备用
            setState(count);
        }

        @Override
        public int tryAcquireShared(int reduceCount) {
            // cas 获取锁
            // 由 AQS 的 acquireShared -> doAcquireShared 调用
            for (; ; ) {
                int current = getState();
                int newCount = current - reduceCount;
                if (newCount < 0 || compareAndSetState(current, newCount)) {
                    return newCount;
                }
            }
        }

        @Override
        public boolean tryReleaseShared(int returnCount) {
            // cas 释放锁
            // 由AQS releaseShared -> doReleaseShared 调用
            for (; ; ) {
                int current = getState();
                int newState = current + returnCount;
                if (compareAndSetState(current, newState)) {
                    return true;
                }
            }
        }
    }

    @Override
    public void lock() {
        sync.acquireShared(1);
    }

    @Override
    public void unlock() {
        sync.releaseShared(1);
    }

    // 忽略,如要实现,直接调用 AQS
    @Override
    public boolean tryLock() {
        return false;
    }

    // 忽略,如要实现,直接调用 AQS
    @Override
    public boolean tryLock(long time, TimeUnit unit) throws InterruptedException {
        return false;
    }

    // 忽略,如要实现,直接调用 AQS
    @Override
    public void lockInterruptibly() throws InterruptedException {

    }

    // 忽略,如要实现,直接调用 AQS
    @Override
    public Condition newCondition() {
        return null;
    }
}

// 睡眠工具类
class SleepUtils {
    public static void second(int sec) {
        try {
            Thread.sleep(sec * 1000L);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

 

  输出的结果是,每两个线程同时执行,10个中挑两个线程,也就是10个任务花5秒钟完成,从而达到资源数量限制的目的。

下面我们来分析下 lock 的运行原理!

  首先,调用 lock.lock(), 获得锁,该lock返回值为void, 所以怎么获取锁呢?自然是在没有获取到锁的时候,自己进行阻塞了!
  调用lock()方法后,lock调用了AQS中的 acquireShared(), 可见,具体实现方法是在 acquireShared() 中,如下:

    public final void acquireShared(int arg) {
        // 先尝试获取 shared 锁,tryAcquireShared() 由具体的实现类处理,如果返回小于0则进入竞争状态
        // 如果大于0,说明资源还有多余的,直接进入后续操作
        if (tryAcquireShared(arg) < 0)
            doAcquireShared(arg);
    }

  而咱们自定义实现的 TwinsLock 实现获取锁方式为cas获取,从而达到阻塞的效果:

        @Override
        public int tryAcquireShared(int reduceCount) {
            // cas 获取锁
            // 由 AQS 的 acquireShared 调用
            for (; ; ) {
                int current = getState();
                int newCount = current - reduceCount;
                if (newCount < 0 || compareAndSetState(current, newCount)) {
                    return newCount;
                }
            }
        }
        

  但是,对于剩余资源数小于0的情况,直接返回,那么是不是就不能阻塞锁了呢?答案是,在AQS中,会有另一个阻塞操作, doAcquireShared()

    /**
     * Acquires in shared uninterruptible mode.
     * @param arg the acquire argument
     */
    private void doAcquireShared(int arg) {
        // 先将线程加入等待队列中,类型为 SHARED
        final Node node = addWaiter(Node.SHARED);
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                // 获取上一个等待中的线程
                final Node p = node.predecessor();
                // 如果是头节点,那么就可以尝试获取锁,也就是说,每次只会取头节点线程进行调用,即先到先得FIFO规则,公平锁
                if (p == head) {
                    // 调用子类具体实现,获取共享锁
                    int r = tryAcquireShared(arg);
                    if (r >= 0) {
                        // 获取到锁后,将head设置过
                        setHeadAndPropagate(node, r);
                        p.next = null; // help GC
                        // 如果上次捕获到中断信息,则进行中断响应
                        if (interrupted)
                            selfInterrupt();
                        failed = false;
                        return;
                    }
                }
                // 获取锁失败后,检测中断
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            // 如果获取锁失败,则
            if (failed)
                cancelAcquire(node);
        }
    }

我们从下面的代码中看到具体是怎么添加队列,怎么进行中断检测的:

    /**
     * Creates and enqueues node for current thread and given mode.
     *
     * @param mode Node.EXCLUSIVE for exclusive, Node.SHARED for shared
     * @return the new node
     */
    private Node addWaiter(Node mode) {
        Node node = new Node(Thread.currentThread(), mode);
        // Try the fast path of enq; backup to full enq on failure
        Node pred = tail;
        if (pred != null) {
            node.prev = pred;
            if (compareAndSetTail(pred, node)) {
                pred.next = node;
                return node;
            }
        }
        enq(node);
        return node;
    }
    
    /**
     * CAS tail field. Used only by enq.
     */
    private final boolean compareAndSetTail(Node expect, Node update) {
        return unsafe.compareAndSwapObject(this, tailOffset, expect, update);
    }
    
    /**
     * Inserts node into queue, initializing if necessary. See picture above.
     * @param node the node to insert
     * @return node's predecessor
     */
    private Node enq(final Node node) {
        for (;;) {
            Node t = tail;
            if (t == null) { // Must initialize
                if (compareAndSetHead(new Node()))
                    tail = head;
            } else {
                node.prev = t;
                if (compareAndSetTail(t, node)) {
                    t.next = node;
                    return t;
                }
            }
        }
    }
    
    
    /**
     * Checks and updates status for a node that failed to acquire.
     * Returns true if thread should block. This is the main signal
     * control in all acquire loops.  Requires that pred == node.prev.
     *
     * @param pred node's predecessor holding status
     * @param node the node
     * @return {@code true} if thread should block
     */
    private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        int ws = pred.waitStatus;
        if (ws == Node.SIGNAL)
            /*
             * This node has already set status asking a release
             * to signal it, so it can safely park.
             */
            return true;
        if (ws > 0) {
            /*
             * Predecessor was cancelled. Skip over predecessors and
             * indicate retry.
             */
            do {
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
            /*
             * waitStatus must be 0 or PROPAGATE.  Indicate that we
             * need a signal, but don't park yet.  Caller will need to
             * retry to make sure it cannot acquire before parking.
             */
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }
    
    /**
     * Convenience method to park and then check if interrupted
     *
     * @return {@code true} if interrupted
     */
    private final boolean parkAndCheckInterrupt() {
        LockSupport.park(this);
        return Thread.interrupted();
    }

    /**
     * Sets head of queue, and checks if successor may be waiting
     * in shared mode, if so propagating if either propagate > 0 or
     * PROPAGATE status was set.
     *
     * @param node the node
     * @param propagate the return value from a tryAcquireShared
     */
    private void setHeadAndPropagate(Node node, int propagate) {
        Node h = head; // Record old head for check below
        setHead(node);
        /*
         * Try to signal next queued node if:
         *   Propagation was indicated by caller,
         *     or was recorded (as h.waitStatus either before
         *     or after setHead) by a previous operation
         *     (note: this uses sign-check of waitStatus because
         *      PROPAGATE status may transition to SIGNAL.)
         * and
         *   The next node is waiting in shared mode,
         *     or we don't know, because it appears null
         *
         * The conservatism in both of these checks may cause
         * unnecessary wake-ups, but only when there are multiple
         * racing acquires/releases, so most need signals now or soon
         * anyway.
         */
        if (propagate > 0 || h == null || h.waitStatus < 0 ||
            (h = head) == null || h.waitStatus < 0) {
            Node s = node.next;
            if (s == null || s.isShared())
                doReleaseShared();
        }
    }
    
    /**
     * Release action for shared mode -- signals successor and ensures
     * propagation. (Note: For exclusive mode, release just amounts
     * to calling unparkSuccessor of head if it needs signal.)
     */
    private void doReleaseShared() {
        /*
         * Ensure that a release propagates, even if there are other
         * in-progress acquires/releases.  This proceeds in the usual
         * way of trying to unparkSuccessor of head if it needs
         * signal. But if it does not, status is set to PROPAGATE to
         * ensure that upon release, propagation continues.
         * Additionally, we must loop in case a new node is added
         * while we are doing this. Also, unlike other uses of
         * unparkSuccessor, we need to know if CAS to reset status
         * fails, if so rechecking.
         */
        for (;;) {
            Node h = head;
            if (h != null && h != tail) {
                int ws = h.waitStatus;
                if (ws == Node.SIGNAL) {
                    if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
                        continue;            // loop to recheck cases
                    unparkSuccessor(h);
                }
                else if (ws == 0 &&
                         !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
                    continue;                // loop on failed CAS
            }
            if (h == head)                   // loop if head changed
                break;
        }
    }
    
    
    /**
     * Cancels an ongoing attempt to acquire.
     *
     * @param node the node
     */
    private void cancelAcquire(Node node) {
        // Ignore if node doesn't exist
        if (node == null)
            return;

        node.thread = null;

        // Skip cancelled predecessors
        Node pred = node.prev;
        while (pred.waitStatus > 0)
            node.prev = pred = pred.prev;

        // predNext is the apparent node to unsplice. CASes below will
        // fail if not, in which case, we lost race vs another cancel
        // or signal, so no further action is necessary.
        Node predNext = pred.next;

        // Can use unconditional write instead of CAS here.
        // After this atomic step, other Nodes can skip past us.
        // Before, we are free of interference from other threads.
        node.waitStatus = Node.CANCELLED;

        // If we are the tail, remove ourselves.
        if (node == tail && compareAndSetTail(node, pred)) {
            compareAndSetNext(pred, predNext, null);
        } else {
            // If successor needs signal, try to set pred's next-link
            // so it will get one. Otherwise wake it up to propagate.
            int ws;
            if (pred != head &&
                ((ws = pred.waitStatus) == Node.SIGNAL ||
                 (ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&
                pred.thread != null) {
                Node next = node.next;
                if (next != null && next.waitStatus <= 0)
                    compareAndSetNext(pred, predNext, next);
            } else {
                unparkSuccessor(node);
            }

            node.next = node; // help GC
        }
    }

以上是获取锁的过程,锁得到后,就可以后续处理。最后,释放锁: unlock(), 调用 AQS 的releaseShared 。

    /**
     * Releases in shared mode.  Implemented by unblocking one or more
     * threads if {@link #tryReleaseShared} returns true.
     *
     * @param arg the release argument.  This value is conveyed to
     *        {@link #tryReleaseShared} but is otherwise uninterpreted
     *        and can represent anything you like.
     * @return the value returned from {@link #tryReleaseShared}
     */
    public final boolean releaseShared(int arg) {
        // 调用子类实现,如果成功,再进入AQS逻辑,否则释放失败
        if (tryReleaseShared(arg)) {
            // AQS 释放
            doReleaseShared();
            return true;
        }
        return false;
    }
    

  可以看到,AQS已经提供了很方便的基础锁设施,我们要实现自定义的锁,只需重写几个特定的方法即可。

  jdk中,基于AQS实现的锁有: ReentrantLock 可重入锁, ReadWriteLock 读写锁, Semaphore 信号量, CountDownLatch 闭锁; 各尽其用吧!

 

posted @ 2018-12-02 17:01  阿牛20  阅读(2191)  评论(1编辑  收藏  举报