2025牛客寒假算法基础集训营1题解
E:双生双宿之错
设变成双生数组后两数分别为\((a,b)\),贪心得到将小的数都变为a,将大的数都变为b为最优解,那么找到a,b即可,对于小数(下标\(1-n/2\))的数而言找到目标数target_a,当变成数x<target_a时,需要的操作数大于变成target_a,同理x>target_a时,需要的操作数大于变成target_a,即其为单峰函数,用三分求出即可。
求出target_a和target_b后,两者仅为半边的最值,暴力枚举其附近的值取最小即可。
#include <bits/stdc++.h>
#define lowbit(x) ((x)&(-x))
#define all(x) x.begin(),x.end()
#define int long long
using namespace std;
const int N = 2e5 + 10;
const int MOD = 998244353;
void solve(){
int n;cin>>n;
vector<int>a(n+1);
for(int i=1;i<=n;i++)cin>>a[i];
sort(all(a));
auto get1=[&](int x){
int cnt=0;
for(int i=1;i<=n/2;i++){
cnt+=abs(a[i]-x);
}
return cnt;
};
auto get2=[&](int x){
int cnt=0;
for(int i=n/2+1;i<=n;i++){
cnt+=abs(a[i]-x);
}
return cnt;
};
int l1=1,r1=1e9;
while(l1<r1){
int mid1=l1+(r1-l1)/3;
int mid2=r1-(r1-l1)/3;
if(get1(mid1)<get1(mid2)){
r1=mid2-1;
}else l1=mid1+1;
}
int l2=1,r2=1e9;
while(l2<r2){
int mid1=l2+(r2-l2)/3;
int mid2=r2-(r2-l2)/3;
if(get2(mid1)<get2(mid2)){
r2=mid2-1;
}else l2=mid1+1;
}
int ans=1e18;
for(int i=-5;i<=5;i++){
for(int j=-5;j<=5;j++){
if(l2+j==l1+i)continue;
else ans=min(ans,get1(l1+i)+get2(l2+j));
}
}
cout<<ans<<'\n';
}
signed main() {
cin.tie(0);
cout.tie(0);
ios::sync_with_stdio(0);
int _ = 1;
cin >> _;
while (_--) {
solve();
}
return 0;
}
H:井然有序之窗
对于构造排列可以选择先构造小的数,那么对于一个区间来说\(r_i\)越大越方便构造,所以将\(r_i\)小的放在前面先构造即可。
#include <bits/stdc++.h>
#define lowbit(x) ((x)&(-x))
#define all(x) x.begin(),x.end()
#define int long long
using namespace std;
const int N = 1e5 + 10;
const int MOD = 998244353;
struct node {
int l, r, id;
} a[N];
vector<int> ans(N);
bool comp(node x, node y) {
return x.r < y.r;
}
void solve() {
int n;
cin >> n;
for (int i = 1; i <= n; i++) {
int l, r;
cin >> l >> r;
a[i] = {l, r, i};
}
sort(a + 1, a + 1 + n, comp);
set<int> num;
for (int i = 1; i <= n; i++) {
num.insert(i);
}
for (int i = 1; i <= n; i++) {
auto [l, r, id] = a[i];
auto it = num.lower_bound(l);
if (it == num.end() || *it > r) {
cout << -1 << '\n';
return;
}
ans[id] = *it;
num.erase(it);
}
for (int i = 1; i <= n; i++) cout << ans[i] << ' ';
}
signed main() {
cin.tie(0);
cout.tie(0);
ios::sync_with_stdio(0);
int _ = 1;
// cin >> _;
while (_--) {
solve();
}
return 0;
}
J:硝基甲苯之袭
很容易得到满足 \(( a_i \oplus a_j = \gcd(a_i, a_j) )\) 时|\(a_i\)-\(a_j\)|=\(\gcd(a_i, a_j)\),所以通过查找\(a_i\)的因子,然后加减因子判断是否合法即可。
#include <bits/stdc++.h>
#define lowbit(x) ((x)&(-x))
#define all(x) x.begin()+1,x.end()
#define int long long
using namespace std;
const int N = 2e5 + 10;
const int MOD = 998244353;
vector<vector<int>>factor(N);
vector<int>a(N);
map<int,int>mp;
void init(){
for (int i = 1; i <= N; ++i) {
for (int j = i; j <= N; j += i) {
factor[j].push_back(i);
}
}
}
void solve() {
init();
int n;
cin >> n;
for(int i=1;i<=n;i++){
cin >>a[i];
mp[a[i]]++;
}
int ans=0;
for(int i=1;i<=n;i++){
for(auto y:factor[a[i]]){
int up=a[i]+y;
int down=a[i]-y;
if(gcd(up,a[i])==(up^a[i])){
ans+=mp[up];
}
if(gcd(down,a[i])==(down^a[i])){
ans+=mp[down];
}
}
}
cout << ans/2<<'\n';
}
signed main() {
cin.tie(0);
cout.tie(0);
ios::sync_with_stdio(0);
int _ = 1;
// cin >> _;
while (_--) {
solve();
}
return 0;
}