进程的描述与进程的创建
阅读理解task_struct数据结构,它包含了
进程状态、运行时间、调度信息、进程的通讯状况、task_struct型链表连接指针
、标号,决定改进程归属、可以读写打开的一些文件信息、进程上下文和内核上下文、处理器上下文、内存信息等
- struct task_struct { volatile long state; 状态信息
- unsigned long flags; //进程号,在调用fork()时给出
- int sigpending; //进程上是否有待处理的信号
- mm_segment_t addr_limit; //进程地址空间,区分内核进程与普通进程在内存存放的不同位置
- //0-0xBFFFFFFF for user-thead
- //0-0xFFFFFFFF for kernel-thread //调度标志,表示该进程是否需要重新调度,若非0,则当从内核态返回到用户态,会发生调度
- volatile long need_resched;
- int lock_depth; //锁深度
- long nice; //进程的基本时间片
- //进程的调度策略,有三种,实时进程:SCHED_FIFO,SCHED_RR, 分时进程:SCHED_OTHER unsigned long policy;
- struct mm_struct *mm; //进程内存管理信息
- int processor; //若进程不在任何CPU上运行, cpus_runnable 的值是0,否则是1 这个值在运行队列被锁时更新
- unsigned long cpus_runnable, cpus_allowed;
- struct list_head run_list; //指向运行队列的指针
- unsigned long sleep_time; //进程的睡眠时间
- //用于将系统中所有的进程连成一个双向循环链表, 其根是init_task
- struct task_struct *next_task, *prev_task;
- struct mm_struct *active_mm;
- struct list_head local_pages; //指向本地页面
- unsigned int allocation_order, nr_local_pages; struct linux_binfmt *binfmt; //进程所运行的可执行文件的格式
- int exit_code, exit_signal;
- int pdeath_signal; //父进程终止是向子进程发送的信号
- unsigned long personality;
- int did_exec:1; pid_t pid; //进程标识符,用来代表一个进程
- pid_t pgrp; //进程组标识,表示进程所属的进程组
- pid_t tty_old_pgrp; //进程控制终端所在的组标识
- pid_t session; //进程的会话标识
- pid_t tgid;
- int leader; //表示进程是否为会话主管
- struct task_struct *p_opptr,*p_pptr,*p_cptr,*p_ysptr,*p_osptr; struct list_head thread_group; //线程链表
- struct task_struct *pidhash_next; //用于将进程链入HASH表
- struct task_struct **pidhash_pprev;
- wait_queue_head_t wait_chldexit; //供wait4()使用
- struct completion *vfork_done; //供vfork() 使用
- unsigned long rt_priority; //实时优先级,用它计算实时进程调度时的weight值 ……
- };
- 进程创建分析
- fork函数到底如何进行对应的内核处理过程sys_clone。
#include <stdio.h>#include <stdlib.h>#include <unistd.h>int main(int argc, char * argv[]){int pid;/* fork another process */-
pid = fork(); if (pid < 0) { /* error occurred */ fprintf(stderr,"Fork Failed!"); exit(-1); } else if (pid == 0) { /* child process */ printf("This is Child Process!\n"); } else { /* parent process */ printf("This is Parent Process!\n"); /* parent will wait for the child to complete*/ wait(NULL); printf("Child Complete!\n"); } } ti = alloc_thread_info_node(tsk, node);tsk->stack = ti;setup_thread_stack(tsk, orig); //这里只是复制thread_info,而非复制内核堆栈*childregs = *current_pt_regs(); //复制内核堆栈childregs->ax = 0; //为什么子进程的fork返回0,这里就是原因!p->thread.sp = (unsigned long) childregs; //调度到子进程时的内核栈顶p->thread.ip = (unsigned long) ret_from_fork; //调度到子进程时的第一条指令地址static struct task_struct *dup_task_struct(struct task_struct *orig){struct task_struct *tsk;struct thread_info *ti;int node = tsk_fork_get_node(orig);int err;tsk = alloc_task_struct_node(node);if (!tsk)return NULL;ti = alloc_thread_info_node(tsk, node);if (!ti)goto free_tsk;err = arch_dup_task_struct(tsk, orig);if (err)goto free_ti;tsk->stack = ti;# ifdef CONFIG_SECCOMPtsk->seccomp.filter = NULL;# endifsetup_thread_stack(tsk, orig);clear_user_return_notifier(tsk);clear_tsk_need_resched(tsk);set_task_stack_end_magic(tsk);# ifdef CONFIG_CC_STACKPROTECTORtsk->stack_canary = get_random_int();# endifatomic_set(&tsk->usage, 2);# ifdef CONFIG_BLK_DEV_IO_TRACEtsk->btrace_seq = 0;# endiftsk->splice_pipe = NULL;tsk->task_frag.page = NULL;account_kernel_stack(ti, 1);return tsk;free_ti:free_thread_info(ti);free_tsk:free_task_struct(tsk);return NULL;}
int copy_thread(unsigned long clone_flags, unsigned long sp, unsigned long arg, struct task_struct *p)
{ ...
*childregs = *current_pt_regs();
childregs->ax = 0;
if (sp) childregs->sp = sp;
p->thread.ip = (unsigned long) ret_from_fork;
... }
/*ret from_fork*/
ENTRY(ret_from_fork)
CFI_STARTPROC
pushl_cfi %eax
call schedule_tail
GET_THREAD_INFO(%ebp)
popl_cfi %eax
pushl_cfi $0x0202 # Reset kernel eflags
popfl_cfi
jmp syscall_exit
CFI_ENDPROC
END
小结:
(ret_from_fork)新进程是从在ret_from_fork之前,也就是在copy_thread()函数中*childregs = *current_pt_regs();该句将父进程的regs参数赋值到子进程的内核堆栈,,使子进程拥有了
SAVE ALL中压入栈的参数,故在ret from_fork时可以返回当前子进程的信息。

浙公网安备 33010602011771号