多元函数微分学(6):反函数定理和隐函数定理

反函数定理:设函数\(f:\mathbb{R}^n\rightarrow \mathbb{R}^n\)为线性变换,定义域为开集,在定义域上\(C^1\)光滑,在定义域上某点a处的Jacobi矩阵\(J_f\)可逆,则存在含a的开集V和含\(f(a)\)的开集W,使得\(f:V\rightarrow W有连续可微的反函数f^{-1}:W\rightarrow V,其\text{Jacobi}矩阵为J_f ^{-1}\)

隐函数定理:若函数\(f\)在零点\(P(x_0,y_0)\)附近有连续偏导数,且\(f_y(x_0,y_0)\neq 0\),则在\(P\)点附近,\(f(x,y)=0\)能确定某个可微的隐函数\(g(x)\),使得\(f(x,g(x))=0,g(x_0)=y_0,\frac{dg}{dx}=-\frac{f_x(x,g(x))}{f_y(x,g(x))}\)

隐函数组定理:若\(f:\mathbb{R}^{n}\times \mathbb{R}^N\rightarrow \mathbb{R}^N\)满足\(f(x_0,y_0)=0,det \frac{\partial f}{\partial y}(x_0,y)\neq 0\)(即\(J_f\)可逆),其中x是\(n\times N\)矩阵,f和y是N维向量,则存在隐函数\(f(x,g(x))=0,g(x_0)=y_0,\frac{\partial g}{\partial x}=-(\frac{\partial f}{\partial y})^{-1}\frac{\partial f}{\partial x}\)

posted @ 2025-05-13 14:29  ykindred  阅读(109)  评论(0)    收藏  举报