多元函数微分学(5):Taylor公式

Lagrange中值定理:设\(f\)在凸区域U上连续可微,则对于任意\(x_1,x_2\in U\)\(f(x_2)-f(x_1)=\nabla f(x_\tau)\cdot (x_2-x_1)\),其中\(x_\tau=x_1+\tau (x_2-x_1),\tau\in (0,1)\)

二阶Taylor公式\(f(x)=f(x_0)+\nabla f(x_0)\cdot \Delta x_0 + \frac{1}{2}(\Delta x_\tau)^T \cdot H_f \cdot x_\tau \Delta x\),进而当\(\Delta x \rightarrow 0\)时有
\(f(x)=f(x_0)+\nabla f(x_0)\cdot \Delta x+\frac{1}{2}(x_0)^TH_f\cdot x_0(\Delta x)^2+o(|\Delta x^2|)\)

n阶Maclaurin公式:与一元函数类似,只不过这里的系数\(D_hf=\Sigma _{i=1}^{n}h_jf_{j}\),若f在\(U(0)内C^k\)光滑,那么对于任意\(h\in U(0)\)\(f(h)=f(0)+\cdots+\frac{D_h ^{k-1}}{(k-1)!}f(0)+\frac{D_h ^k}{k!}f(\tau h)\),此处\(D_h ^k=\Sigma _{j_1+\cdots +j_n=k}\frac{k!}{j_1!j_2!\cdots j_n!}h_1^{j_1}h_2{j_2}\cdots h_n^{j_n}D_1 ^{j_1}\cdots D_n^{j_n}\).当\(h\rightarrow 0\)时也可以写成Peano余项的形式,定义如下
多重指标:定义\(\alpha =(j_1,\cdots,j_n),|\alpha|=j_1+\cdots+j_n,\alpha !=j_1!\cdots j_n!,h^{\alpha}=h_1^{j_1}\cdots h_n^{j_n},D^{\alpha}=D_1^{j_1}\cdots D_n^{j_n}\)
那么Maclaurin公式就可以表示成:\(f(h)=\Sigma _{i=0} ^k \Sigma _{|\alpha|=i} \frac{D^{\alpha}}{\alpha !}f(0)h^{\alpha}+\Sigma _{\alpha = i+1}\frac{D^{\alpha}}{\alpha !}f(\tau h)h^{\alpha}\)
可以看作是f(h)对变量\(x_1,\cdots,x_n\)逐次展开的结果

唯一性定理:函数在某点的Taylor展开式唯一

向量值函数的Taylor公式(中值不等式):设\(f:\mathbb{R}^n\rightarrow \mathbb{R}^m\),若\(f\in C_1(U),U为凸区域,||J_f||<M\),则有\(\Delta f\leq M\Delta x\)

posted @ 2025-05-12 23:23  ykindred  阅读(67)  评论(0)    收藏  举报