MYSQL多表查询相关

1,普通

#查询人员和部门所有信息
select * from person,dept where person.did = dept.did;
#注意: 多表查询时,一定要找到两个表中相互关联的字段,并且作为条件使用

2,连接查询

#多表连接查询语法(重点)
SELECT 字段列表
    FROM 表1  INNER|LEFT|RIGHT JOIN  表2
ON 表1.字段 = 表2.字段;
 
2.1, 内连接查询 (只显示符合条件的数据)
1
2
#查询人员和部门所有信息
select from person inner join dept  on person.did =dept.did;

 效果:  内连接查询与多表联合查询的效果是一样的

2.2, 左外连接查询 (左边表中的数据优先全部显示)
1
2
#查询人员和部门所有信息
select from person left join  dept  on  person.did =dept.did;

 效果:人员表中的数据全部都显示,而 部门表中的数据符合条件的才会显示,不符合条件的会以 null 进行填充.

2.3,右外连接查询 (右边表中的数据优先全部显示)

1
2
#查询人员和部门所有信息
select from person right join  dept  on  person.did =dept.did;

 效果:正好与[左外连接相反]

2.4全连接查询(显示左右表中全部数据)

  全连接查询:是在内连接的基础上增加 左右两边没有显示的数据
  注意: mysql并不支持全连接 full JOIN 关键字
  注意: 但是mysql 提供了 UNION 关键字.使用 UNION 可以间接实现 full JOIN 功能

1
2
3
4
5
#查询人员和部门的所有数据
 
SELECT * FROM person LEFT JOIN dept ON person.did = dept.did
UNION
SELECT * FROM person RIGHT JOIN dept ON person.did = dept.did;

 

3,复杂条件多表查询

3.1,查询出 教学部 年龄大于20岁,并且工资小于40000的员工,按工资倒序排列.(要求:分别使用多表联合查询和内连接查询)

#1.多表联合查询方式:
select * from person p1,dept d2 where p1.did = d2.did  
    and d2.dname='python' 
    and  age>20 
    and salary <40000 
ORDER BY salary DESC;

#2.内连接查询方式:
SELECT * FROM person p1 INNER JOIN dept d2 ON p1.did= d2.did 
    and d2.dname='python' 
    and  age>20 
    and salary <40000 
ORDER BY salary DESC;    
3.2,查询每个部门中最高工资和最低工资是多少,显示部门名称
select MAX(salary),MIN(salary),dept.dname from 
        person LEFT JOIN dept
            ON person.did = dept.did
 GROUP BY person.did;

4,子语句查询

4.1,

子查询(嵌套查询): 查多次, 多个select

注意: 第一次的查询结果可以作为第二次的查询的 条件 或者 表名 使用.

子查询中可以包含:IN、NOT IN、ANY、ALL、EXISTS 和 NOT EXISTS等关键字. 还可以包含比较运算符:= 、 !=、> 、<等.

 1.作为表名使用
select * from (select * from person) as 表名;
 
ps:大家需要注意的是: 一条语句中可以有多个这样的子查询,在执行时,最里层括号(sql语句) 具有优先执行权.<br>注意: as 后面的表名称不能加引号('')

4.2,求最大工资那个人的姓名和薪水

1.求最大工资
select max(salary) from person;
2.求最大工资那个人叫什么
select name,salary from person where salary=53000;
合并
select name,salary from person where salary=(select max(salary) from person);

4.3,求工资高于所有人员平均工资的人员

1.求平均工资
select avg(salary) from person;

2.工资大于平均工资的 人的姓名、工资
select name,salary from person where salary > 21298.625;
合并
select name,salary from person where salary >(select avg(salary) from person);

4.4,关键字

假设any内部的查询语句返回的结果个数是三个,如:result1,result2,result3,那么,

select ...from ... where a > any(...);
->
select ...from ... where a > result1 or a > result2 or a > result3;

4.5,ALL关键字与any关键字类似,只不过上面的or改成and。

即: select ...from ... where a > all(...); -> select ...from ... where a > result1 and a > result2 and a > result3;

4.6,some关键字和any关键字是一样的功能。

所以: select ...from ... where a > some(...); -> select ...from ... where a > result1 or a > result2 or a > result3;

4.7,EXISTS 和 NOT EXISTS 子查询语法如下:


  SELECT ... FROM table WHERE  EXISTS (subquery)
该语法可以理解为:主查询(外部查询)会根据子查询验证结果(TRUE 或 FALSE)来决定主查询是否得以执行。

mysql> SELECT * FROM person
    -> WHERE EXISTS
    -> (SELECT * FROM dept WHERE did=5);
Empty set (0.00 sec)
此处内层循环并没有查询到满足条件的结果,因此返回false,外层查询不执行。

NOT EXISTS刚好与之相反

mysql> SELECT * FROM person 
    -> WHERE NOT EXISTS 
    -> (SELECT * FROM dept WHERE did=5);
+----+----------+-----+-----+--------+------+
| id | name     | age | sex | salary | did  |
+----+----------+-----+-----+--------+------+
|  1 | alex     |  28 | 女  |  53000 |    1 |
|  2 | wupeiqi  |  23 | 女  |  29000 |    1 |
|  3 | egon     |  30 | 男  |  27000 |    1 |
|  4 | oldboy   |  22 | 男  |      1 |    2 |
|  5 | jinxin   |  33 | 女  |  28888 |    1 |
|  6 | 张无忌   |  20 | 男  |   8000 |    3 |
|  7 | 令狐冲   |  22 | 男  |   6500 |    2 |
|  8 | 东方不败 |  23 | 女  |  18000 | NULL |
+----+----------+-----+-----+--------+------+
8 rows in set

当然,EXISTS关键字可以与其他的查询条件一起使用,条件表达式与EXISTS关键字之间用AND或者OR来连接,如下:

mysql> SELECT * FROM person 
    -> WHERE AGE >23 AND NOT EXISTS 
    -> (SELECT * FROM dept WHERE did=5);
提示:
•EXISTS (subquery) 只返回 TRUE 或 FALSE,因此子查询中的 SELECT * 也可以是 SELECT 1 或其他,官方说法是实际执行时会忽略 SELECT 清单,因此没有区别。

 

 

5,其他方式查询

5.1,临时表查询

   需求:  查询高于本部门平均工资的人员

   解析思路: 1.先查询本部门人员平均工资是多少.

         2.再使用人员的工资与部门的平均工资进行比较

#1.先查询部门人员的平均工资
SELECT dept_id,AVG(salary)as sal from person GROUP BY dept_id;
 
#2.再用人员的工资与部门的平均工资进行比较
SELECT * FROM person as p1,
    (SELECT dept_id,AVG(salary)as '平均工资' from person GROUP BY dept_id) as p2
where p1.dept_id = p2.dept_id AND p1.salary >p2.`平均工资`;

ps:在当前语句中,我们可以把上一次的查询结果当前做一张表来使用.因为p2表不是真是存在的,所以:我们称之为 临时表  
   临时表:不局限于自身表,任何的查询结果集都可以认为是一个临时表.

5.2,判断查询 IF关键字

 需求1 :根据工资高低,将人员划分为两个级别,分别为 高端人群和低端人群。显示效果:姓名,年龄,性别,工资,级别

select p1.*, 
    
    IF(p1.salary >10000,'高端人群','低端人群') as '级别'
 
from person p1;

#ps: 语法: IF(条件表达式,"结果为true",'结果为false');

5.3,需求2: 根据工资高低,统计每个部门人员收入情况,划分为 富人,小资,平民,吊丝 四个级别, 要求统计四个级别分别有多少人

#语法一:
SELECT
    CASE WHEN STATE = '1' THEN '成功'
         WHEN STATE = '2' THEN '失败'
         ELSE '其他' END 
FROM 表;
 
#语法二:
SELECT CASE age
           WHEN 23 THEN '23岁'
           WHEN 27 THEN '27岁'
           WHEN 30 THEN '30岁'
        ELSE '其他岁' END
FROM person;
 

 

 
SELECT dname '部门',
             sum(case WHEN salary >50000 THEN 1 ELSE 0 end) as '富人',
             sum(case WHEN salary between 29000 and 50000 THEN 1 ELSE 0 end) as '小资',
             sum(case WHEN salary between 10000 and 29000 THEN 1 ELSE 0 end) as '平民',
             sum(case WHEN salary <10000 THEN 1 ELSE 0 end) as '吊丝'
FROM person,dept where person.dept_id = dept.did GROUP BY dept_id
 

 

6,SQL逻辑查询语句执行顺序(重点)

在这些SQL语句的执行过程中,都会产生一个虚拟表,用来保存SQL语句的执行结果(这是重点),我们现在就来跟踪这个虚拟表的变化,得到最终的查询结果的过程,来分析整个SQL逻辑查询的执行顺序和过程。

 

6.1.执行FROM语句

第一步,执行FROM语句。我们首先需要知道最开始从哪个表开始的,这就是FROM告诉我们的。现在有了<left_table><right_table>两个表,我们到底从哪个表开始,还是从两个表进行某种联系以后再开始呢?它们之间如何产生联系呢?——笛卡尔积

经过FROM语句对两个表执行笛卡尔积,会得到一个虚拟表,暂且叫VT1(vitual table 1),内容如下:

复制代码
+-------------+----------+----------+-------------+
| customer_id | city     | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163         | hangzhou |        1 | 163         |
| 9you        | shanghai |        1 | 163         |
| baidu       | hangzhou |        1 | 163         |
| tx          | hangzhou |        1 | 163         |
| 163         | hangzhou |        2 | 163         |
| 9you        | shanghai |        2 | 163         |
| baidu       | hangzhou |        2 | 163         |
| tx          | hangzhou |        2 | 163         |
| 163         | hangzhou |        3 | 9you        |
| 9you        | shanghai |        3 | 9you        |
| baidu       | hangzhou |        3 | 9you        |
| tx          | hangzhou |        3 | 9you        |
| 163         | hangzhou |        4 | 9you        |
| 9you        | shanghai |        4 | 9you        |
| baidu       | hangzhou |        4 | 9you        |
| tx          | hangzhou |        4 | 9you        |
| 163         | hangzhou |        5 | 9you        |
| 9you        | shanghai |        5 | 9you        |
| baidu       | hangzhou |        5 | 9you        |
| tx          | hangzhou |        5 | 9you        |
| 163         | hangzhou |        6 | tx          |
| 9you        | shanghai |        6 | tx          |
| baidu       | hangzhou |        6 | tx          |
| tx          | hangzhou |        6 | tx          |
| 163         | hangzhou |        7 | NULL        |
| 9you        | shanghai |        7 | NULL        |
| baidu       | hangzhou |        7 | NULL        |
| tx          | hangzhou |        7 | NULL        |
+-------------+----------+----------+-------------+
复制代码

总共有28(table1的记录条数 * table2的记录条数)条记录。这就是VT1的结果,接下来的操作就在VT1的基础上进行。

 

6.2.执行ON过滤

执行完笛卡尔积以后,接着就进行ON a.customer_id = b.customer_id条件过滤,根据ON中指定的条件,去掉那些不符合条件的数据,得到VT2表,内容如下:

复制代码
+-------------+----------+----------+-------------+
| customer_id | city     | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163         | hangzhou |        1 | 163         |
| 163         | hangzhou |        2 | 163         |
| 9you        | shanghai |        3 | 9you        |
| 9you        | shanghai |        4 | 9you        |
| 9you        | shanghai |        5 | 9you        |
| tx          | hangzhou |        6 | tx          |
+-------------+----------+----------+-------------+
复制代码

T2就是经过ON条件筛选以后得到的有用数据,而接下来的操作将在VT2的基础上继续进行。

 

6.3.添加外部行

这一步只有在连接类型为OUTER JOIN时才发生,如LEFT OUTER JOINRIGHT OUTER JOIN。在大多数的时候,我们都是会省略掉OUTER关键字的,但OUTER表示的就是外部行的概念。

LEFT OUTER JOIN把左表记为保留表,得到的结果为:

复制代码
+-------------+----------+----------+-------------+
| customer_id | city     | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163         | hangzhou |        1 | 163         |
| 163         | hangzhou |        2 | 163         |
| 9you        | shanghai |        3 | 9you        |
| 9you        | shanghai |        4 | 9you        |
| 9you        | shanghai |        5 | 9you        |
| tx          | hangzhou |        6 | tx          |
| baidu       | hangzhou |     NULL | NULL        |
+-------------+----------+----------+-------------+
复制代码

RIGHT OUTER JOIN把右表记为保留表,得到的结果为:

复制代码
+-------------+----------+----------+-------------+
| customer_id | city     | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163         | hangzhou |        1 | 163         |
| 163         | hangzhou |        2 | 163         |
| 9you        | shanghai |        3 | 9you        |
| 9you        | shanghai |        4 | 9you        |
| 9you        | shanghai |        5 | 9you        |
| tx          | hangzhou |        6 | tx          |
| NULL        | NULL     |        7 | NULL        |
+-------------+----------+----------+-------------+
复制代码

添加外部行的工作就是在VT2表的基础上添加保留表中被过滤条件过滤掉的数据,非保留表中的数据被赋予NULL值,最后生成虚拟表VT3。

由于我在准备的测试SQL查询逻辑语句中使用的是LEFT JOIN,过滤掉了以下这条数据:

| baidu       | hangzhou |     NULL | NULL        |

现在就把这条数据添加到VT2表中,得到的VT3表如下:

复制代码
+-------------+----------+----------+-------------+
| customer_id | city     | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163         | hangzhou |        1 | 163         |
| 163         | hangzhou |        2 | 163         |
| 9you        | shanghai |        3 | 9you        |
| 9you        | shanghai |        4 | 9you        |
| 9you        | shanghai |        5 | 9you        |
| tx          | hangzhou |        6 | tx          |
| baidu       | hangzhou |     NULL | NULL        |
+-------------+----------+----------+-------------+
复制代码

接下来的操作都会在该VT3表上进行。

6.4.执行WHERE过滤

对添加外部行得到的VT3进行WHERE过滤,只有符合<where_condition>的记录才会输出到虚拟表VT4中。当我们执行WHERE a.city = 'hangzhou'的时候,就会得到以下内容,并存在虚拟表VT4中:

复制代码
+-------------+----------+----------+-------------+
| customer_id | city     | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163         | hangzhou |        1 | 163         |
| 163         | hangzhou |        2 | 163         |
| tx          | hangzhou |        6 | tx          |
| baidu       | hangzhou |     NULL | NULL        |
+-------------+----------+----------+-------------+
复制代码

但是在使用WHERE子句时,需要注意以下两点:

  1. 由于数据还没有分组,因此现在还不能在WHERE过滤器中使用where_condition=MIN(col)这类对分组统计的过滤;
  2. 由于还没有进行列的选取操作,因此在SELECT中使用列的别名也是不被允许的,如:SELECT city as c FROM t WHERE c='shanghai';是不允许出现的。

6.5.执行GROUP BY分组

GROU BY子句主要是对使用WHERE子句得到的虚拟表进行分组操作。我们执行测试语句中的GROUP BY a.customer_id,就会得到以下内容:

复制代码
+-------------+----------+----------+-------------+
| customer_id | city     | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163         | hangzhou |        1 | 163         |
| baidu       | hangzhou |     NULL | NULL        |
| tx          | hangzhou |        6 | tx          |
+-------------+----------+----------+-------------+
复制代码

得到的内容会存入虚拟表VT5中,此时,我们就得到了一个VT5虚拟表,接下来的操作都会在该表上完成。

6.6.执行HAVING过滤

HAVING子句主要和GROUP BY子句配合使用,对分组得到的VT5虚拟表进行条件过滤。当我执行测试语句中的HAVING count(b.order_id) < 2时,将得到以下内容:

复制代码
+-------------+----------+----------+-------------+
| customer_id | city     | order_id | customer_id |
+-------------+----------+----------+-------------+
| baidu       | hangzhou |     NULL | NULL        |
| tx          | hangzhou |        6 | tx          |
+-------------+----------+----------+-------------+
复制代码

这就是虚拟表VT6。

6.7.SELECT列表

现在才会执行到SELECT子句,不要以为SELECT子句被写在第一行,就是第一个被执行的。

我们执行测试语句中的SELECT a.customer_id, COUNT(b.order_id) as total_orders,从虚拟表VT6中选择出我们需要的内容。我们将得到以下内容:

复制代码
+-------------+--------------+
| customer_id | total_orders |
+-------------+--------------+
| baidu       |            0 |
| tx          |            1 |
+-------------+--------------+
复制代码

不,还没有完,这只是虚拟表VT7。

6.8.执行DISTINCT子句

如果在查询中指定了DISTINCT子句,则会创建一张内存临时表(如果内存放不下,就需要存放在硬盘了)。这张临时表的表结构和上一步产生的虚拟表VT7是一样的,不同的是对进行DISTINCT操作的列增加了一个唯一索引,以此来除重复数据。

由于我的测试SQL语句中并没有使用DISTINCT,所以,在该查询中,这一步不会生成一个虚拟表。

6.9.执行ORDER BY子句

对虚拟表中的内容按照指定的列进行排序,然后返回一个新的虚拟表,我们执行测试SQL语句中的ORDER BY total_orders DESC,就会得到以下内容:

复制代码
+-------------+--------------+
| customer_id | total_orders |
+-------------+--------------+
| tx          |            1 |
| baidu       |            0 |
+-------------+--------------+
复制代码

可以看到这是对total_orders列进行降序排列的。上述结果会存储在VT8中。

6.10.执行LIMIT子句

LIMIT子句从上一步得到的VT8虚拟表中选出从指定位置开始的指定行数据。对于没有应用ORDER BY的LIMIT子句,得到的结果同样是无序的,所以,很多时候,我们都会看到LIMIT子句会和ORDER BY子句一起使用。

MySQL数据库的LIMIT支持如下形式的选择:

LIMIT n, m

表示从第n条记录开始选择m条记录。而很多开发人员喜欢使用该语句来解决分页问题。对于小数据,使用LIMIT子句没有任何问题,当数据量非常大的时候,使用LIMIT n, m是非常低效的。因为LIMIT的机制是每次都是从头开始扫描,如果需要从第60万行开始,读取3条数据,就需要先扫描定位到60万行,然后再进行读取,而扫描的过程是一个非常低效的过程。所以,对于大数据处理时,是非常有必要在应用层建立一定的缓存机制(貌似现在的大数据处理,都有缓存哦).

 

7,外键约束

 

1.问题?

 

  什么是约束:约束是一种限制,它通过对表的行或列的数据做出限制,来确保表的数据的完整性、唯一性

 

2.问题?

 

  以上两个表 person和dept中, 新人员可以没有部门吗?

 

3.问题?

 

  新人员可以添加一个不存在的部门吗?

 

4.如何解决以上问题呢?

 

  简单的说,就是对两个表的关系进行一些约束 (即: froegin key). 

 

  foreign key 定义:就是表与表之间的某种约定的关系,由于这种关系的存在,能够让表与表之间的数据,更加的完整,关连性更强。

 

5.具体操作

 

    5.1创建表时,同时创建外键约束

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CREATE TABLE IF NOT EXISTS dept (
    did int not null auto_increment PRIMARY KEY,
    dname VARCHAR(50) not null COMMENT '部门名称'
)ENGINE=INNODB DEFAULT charset utf8;
    
CREATE TABLE IF NOT EXISTS person(
    id int not null auto_increment PRIMARY KEY,
    name VARCHAR(50) not null,
    age TINYINT(4) null DEFAULT 0,
    sex enum('男','女','人妖') NOT NULL DEFAULT '人妖',
    salary decimal(10,2) NULL DEFAULT '250.00',
    hire_date date NOT NULL,
    dept_id int(11) DEFAULT NULL,
   CONSTRAINT fk_did FOREIGN KEY(dept_id) REFERENCES dept(did) -- 添加外键约束
)ENGINE = INNODB DEFAULT charset utf8;

 

   5.2 已经创建表后,追加外键约束

 

1
2
3
4
5
#添加外键约束
ALTER table person add constraint fk_did FOREIGN key(dept_id) REFERENCES dept(did);
  
#删除外键约束
ALTER TABLE person drop FOREIGN key fk_did;

 

定义外键的条件:

 

(1)外键对应的字段数据类型保持一致,且被关联的字段(即references指定的另外一个表的字段),必须保证唯一

 

(2)所有tables的存储引擎必须是InnoDB类型.

 

(3)外键的约束4种类型: 1.RESTRICT 2. NO ACTION 3.CASCADE 4.SET NULL

 

复制代码
RESTRICT
同no action, 都是立即检查外键约束

NO ACTION
如果子表中有匹配的记录,则不允许对父表对应候选键进行update/delete操作  

CASCADE
在父表上update/delete记录时,同步update/delete掉子表的匹配记录 

SET NULL
在父表上update/delete记录时,将子表上匹配记录的列设为null (要注意子表的外键列不能为not null) 
复制代码

 

(4)建议:1.如果需要外键约束,最好创建表同时创建外键约束.

 

       2.如果需要设置级联关系,删除时最好设置为 SET NULL.

 

注:插入数据时,先插入主表中的数据,再插入从表中的数据。

 

       删除数据时,先删除从表中的数据,再删除主表中的数据。

 

 

8,其他约束类型

1.非空约束

 关键字: NOT NULL ,表示 不可空. 用来约束表中的字段列

create table t1(
       id int(10) not null primary key,
       name varchar(100) null
 );    

2.主键约束

 用于约束表中的一行,作为这一行的标识符,在一张表中通过主键就能准确定位到一行,因此主键十分重要。

create table t2(
    id int(10) not null primary key
);

注意: 主键这一行的数据不能重复不能为空

还有一种特殊的主键——复合主键。主键不仅可以是表中的一列,也可以由表中的两列或多列来共同标识

create table t3(
    id int(10) not null,
    name varchar(100) ,
    primary key(id,name)
);

3.唯一约束

 关键字: UNIQUE, 比较简单,它规定一张表中指定的一列的值必须不能有重复值,即这一列每个值都是唯一的。

create table t4(
    id int(10) not null,
    name varchar(255) ,
    unique id_name(id,name)
);
//添加唯一约束
alter table t4 add unique id_name(id,name);
//删除唯一约束
alter table t4 drop index id_name;

注意: 当INSERT语句新插入的数据和已有数据重复的时候,如果有UNIQUE约束,则INSERT失败. 

4.默认值约束  

关键字: DEFAULT

create table t5(
    id int(10) not null primary key,
    name varchar(255) default '张三'   
);
#插入数据
INSERT into t5(id) VALUES(1),(2);

注意: INSERT语句执行时.,如果被DEFAULT约束的位置没有值,那么这个位置将会被DEFAULT的值填充

 

9,表间关系

1.表关系分类:

  总体可以分为三类: 一对一 、一对多(多对一) 、多对多

2.如何区分表与表之间是什么关系?

复制代码
#分析步骤:
#多对一 /一对多
#1.站在左表的角度去看右表(情况一)
如果左表中的一条记录,对应右表中多条记录.那么他们的关系则为 一对多 关系.约束关系为:左表普通字段, 对应右表foreign key 字段.

注意:如果左表与右表的情况反之.则关系为 多对一 关系.约束关系为:左表foreign key 字段, 对应右表普通字段.

#一对一
#2.站在左表的角度去看右表(情况二)
如果左表中的一条记录 对应 右表中的一条记录. 则关系为 一对一关系.
约束关系为:左表foreign key字段上 添加唯一(unique)约束, 对应右表 关联字段.
或者:右表foreign key字段上 添加唯一(unique)约束, 对应右表 关联字段.

#多对多
#3.站在左表和右表同时去看(情况三)
如果左表中的一条记录 对应 右表中的多条记录,并且右表中的一条记录同时也对应左表的多条记录. 那么这种关系 则 多对多 关系. 
这种关系需要定义一个这两张表的[关系表]来专门存放二者的关系
复制代码

3.建立表关系

1.一对多关系

 例如:一个人可以拥有多辆汽车,要求查询某个人拥有的所有车辆。 
 分析:人和车辆分别单独建表,那么如何将两个表关联呢?有个巧妙的方法,在车辆的表中加个外键字段(人的编号)即可。 
 * (思路小结:’建两个表,一’方不动,’多’方添加一个外键字段)*

 

复制代码
//建立人员表
CREATE TABLE people(
    id VARCHAR(12) PRIMARY KEY,
    sname VARCHAR(12),
    age INT,
    sex CHAR(1)
);
INSERT INTO people VALUES('H001','小王',27,'1');
INSERT INTO people VALUES('H002','小明',24,'1');
INSERT INTO people VALUES('H003','张慧',28,'0');
INSERT INTO people VALUES('H004','李小燕',35,'0');
INSERT INTO people VALUES('H005','王大拿',29,'1');
INSERT INTO people VALUES('H006','周强',36,'1');
 //建立车辆信息表
CREATE TABLE car(
    id VARCHAR(12) PRIMARY KEY,
    mark VARCHAR(24),
    price NUMERIC(6,2),
    pid VARCHAR(12),
    CONSTRAINT fk_people FOREIGN KEY(pid) REFERENCES people(id)
);
INSERT INTO car VALUES('C001','BMW',65.99,'H001');
INSERT INTO car VALUES('C002','BenZ',75.99,'H002');
INSERT INTO car VALUES('C003','Skoda',23.99,'H001');
INSERT INTO car VALUES('C004','Peugeot',20.99,'H003');
INSERT INTO car VALUES('C005','Porsche',295.99,'H004');
INSERT INTO car VALUES('C006','Honda',24.99,'H005');
INSERT INTO car VALUES('C007','Toyota',27.99,'H006');
INSERT INTO car VALUES('C008','Kia',18.99,'H002');
INSERT INTO car VALUES('C009','Bentley',309.99,'H005');
复制代码
复制代码
例子1:学生和班级之间的关系

班级表
id   class_name 
1    python脱产100期
2    python脱产300期

学生表          foreign key               
id     name    class_id
1       alex     2
2       刘强东    2
3       马云      1

例子2: 一个女孩 拥有多个男朋友...

例子3:....
复制代码

 2.一对一关系

 例如:一个中国公民只能有一个身份证信息

 分析: 一对一的表关系实际上是 变异了的 一对多关系. 通过在从表的外键字段上添加唯一约束(unique)来实现一对一表关系.

 

复制代码
#身份证信息表
CREATE TABLE card (
  id int NOT NULL AUTO_INCREMENT PRIMARY KEY,
  code varchar(18) DEFAULT NULL,
  UNIQUE un_code (CODE) -- 创建唯一索引的目的,保证身份证号码同样不能出现重复
);

INSERT INTO card VALUES(null,'210123123890890678'),
                       (null,'210123456789012345'),
                       (null,'210098765432112312');

#公民表
CREATE TABLE people (
  id int NOT NULL AUTO_INCREMENT PRIMARY KEY,
  name varchar(50) DEFAULT NULL,
  sex char(1) DEFAULT '0',
  c_id int UNIQUE, -- 外键添加唯一约束,确保一对一
  CONSTRAINT fk_card_id FOREIGN KEY (c_id) REFERENCES card(id)
);

INSERT INTO people VALUES(null,'zhangsan','1',1),
                         (null,'lisi','0',2),
                         (null,'wangwu','1',3);
复制代码
复制代码
例子一:一个用户只有一个博客
    用户表:
    主键
    id   name
    1    egon
    2    alex
    3    wupeiqi


    博客表   
           fk+unique
    id url user_id
    1  xxxx   1
    2  yyyy   3
    3  zzz    2

例子2: 一个男人的户口本上,一辈子最多只能一个女主的名字.等等
复制代码

3.多对多关系

 例如:学生选课,一个学生可以选修多门课程,每门课程可供多个学生选择。 
 分析:这种方式可以按照类似一对多方式建表,但冗余信息太多,好的方式是实体和关系分离并单独建表,实体表为学生表和课程表,关系表为选修表,
其中关系表采用联合主键的方式(由学生表主键和课程表主键组成)建表。

 

#//建立学生表
CREATE TABLE student(
    id VARCHAR(10) PRIMARY KEY,
    sname VARCHAR(12),
    age INT,
    sex CHAR(1)
);
INSERT INTO student VALUES('S0001','王军',20,1);
INSERT INTO student VALUES('S0002','张宇',21,1);
INSERT INTO student VALUES('S0003','刘飞',22,1);
INSERT INTO student VALUES('S0004','赵燕',18,0);
INSERT INTO student VALUES('S0005','曾婷',19,0);
INSERT INTO student VALUES('S0006','周慧',21,0);
INSERT INTO student VALUES('S0007','小红',23,0);
INSERT INTO student VALUES('S0008','杨晓',18,0);
INSERT INTO student VALUES('S0009','李杰',20,1);
INSERT INTO student VALUES('S0010','张良',22,1);

# //建立课程表
CREATE TABLE course(
    id VARCHAR(10) PRIMARY KEY,
    sname VARCHAR(12),
    credit DOUBLE(2,1),
    teacher VARCHAR(12)
);
INSERT INTO course VALUES('C001','Java',3.5,'李老师');
INSERT INTO course VALUES('C002','高等数学',5.0,'赵老师');
INSERT INTO course VALUES('C003','JavaScript',3.5,'王老师');
INSERT INTO course VALUES('C004','离散数学',3.5,'卜老师');
INSERT INTO course VALUES('C005','数据库',3.5,'廖老师');
INSERT INTO course VALUES('C006','操作系统',3.5,'张老师');

# //建立选修表
CREATE TABLE sc(
    sid VARCHAR(10),
    cid VARCHAR(10),
      PRIMARY KEY(sid,cid),
      CONSTRAINT fk_student FOREIGN KEY(sid) REFERENCES student(id),
      CONSTRAINT fk_course FOREIGN KEY(cid) REFERENCES course(id)
);

INSERT INTO sc VALUES('S0001','C001');
INSERT INTO sc VALUES('S0001','C002');
INSERT INTO sc VALUES('S0001','C003');
INSERT INTO sc VALUES('S0002','C001');
INSERT INTO sc VALUES('S0002','C004');
INSERT INTO sc VALUES('S0003','C002');
INSERT INTO sc VALUES('S0003','C005');
INSERT INTO sc VALUES('S0004','C003');
INSERT INTO sc VALUES('S0005','C001');
INSERT INTO sc VALUES('S0006','C004');
INSERT INTO sc VALUES('S0007','C002');
INSERT INTO sc VALUES('S0008','C003');
INSERT INTO sc VALUES('S0009','C001');
INSERT INTO sc VALUES('S0009','C005');

 

例子1:中华相亲网: 男嘉宾表+相亲关系表+女嘉宾表
男嘉宾:
    1  孟飞
    2  乐嘉
女嘉宾:
    1  小乐
    2  小嘉
                    
相亲表:(中间表)
                    
男嘉宾  女嘉宾  相亲时间
1          1            2017-10-12 12:12:12
                    
1          2           2017-10-13 12:12:12

1          1           2017-10-15 12:12:12


例子2: 用户表,菜单表,用户权限表...
 

10,数据三范式

范式的概念 

  为了建立冗余较小、结构合理的数据库,设计数据库时必须遵循一定的规则。在关系型数据库中这种规则就称为范式。范式是符合某一种设计要求的总结。要想设计一个结构合理的关系型数据库,必须满足一定的范式。

在实际开发中最为常见的设计范式有三个:

1.第一范式(确保每列保持原子性)

第一范式是最基本的范式。如果数据库表中的所有字段值都是不可分解的原子值,就说明该数据库表满足了第一范式。

第一范式的合理遵循需要根据系统的实际需求来定。比如某些数据库系统中需要用到“地址”这个属性,本来直接将“地址”属性设计成一个数据库表的字段就行。但是如果系统经常会访问“地址”属性中的“城市”部分,那么就非要将“地址”这个属性重新拆分为省份、城市、详细地址等多个部分进行存储,这样在对地址中某一部分操作的时候将非常方便。这样设计才算满足了数据库的第一范式,如下表所示。

上表所示的用户信息遵循了第一范式的要求,这样在对用户使用城市进行分类的时候就非常方便,也提高了数据库的性能。

                

2.第二范式(确保表中的每列都和主键相关)

第二范式在第一范式的基础之上更进一层。第二范式需要确保数据库表中的每一列都和主键相关,而不能只与主键的某一部分相关(主要针对联合主键而言)。也就是说在一个数据库表中,一个表中只能保存一种数据,不可以把多种数据保存在同一张数据库表中。

比如要设计一个订单信息表,因为订单中可能会有多种商品,所以要将订单编号和商品编号作为数据库表的联合主键,如下表所示。

 订单信息表

这样就产生一个问题:这个表中是以订单编号和商品编号作为联合主键。这样在该表中商品名称、单位、商品价格等信息不与该表的主键相关,而仅仅是与商品编号相关。所以在这里违反了第二范式的设计原则。

而如果把这个订单信息表进行拆分,把商品信息分离到另一个表中,把订单项目表也分离到另一个表中,就非常完美了。如下所示。

这样设计,在很大程度上减小了数据库的冗余。如果要获取订单的商品信息,使用商品编号到商品信息表中查询即可。

                 

3.第三范式(确保每列都和主键列直接相关,而不是间接相关)

第三范式需要确保数据表中的每一列数据都和主键直接相关,而不能间接相关。

比如在设计一个订单数据表的时候,可以将客户编号作为一个外键和订单表建立相应的关系。而不可以在订单表中添加关于客户其它信息(比如姓名、所属公司等)的字段。如下面这两个表所示的设计就是一个满足第三范式的数据库表。

这样在查询订单信息的时候,就可以使用客户编号来引用客户信息表中的记录,也不必在订单信息表中多次输入客户信息的内容,减小了数据冗余。

注意事项:

1.第二范式与第三范式的本质区别:在于有没有分出两张表。

第二范式是说一张表中包含了多种不同实体的属性,那么必须要分成多张表,第三范式是要求已经分好了多张表的话,一张表中只能有另一张标的ID,而不能有其他任何信息,(其他任何信息,一律用主键在另一张表中查询)。

2.必须先满足第一范式才能满足第二范式,必须同时满足第一第二范式才能满足第三范式。

 

————————————————————————————————————————————————————————

转载引用:https://www.cnblogs.com/bypp/p/8618382.html

posted @ 2020-10-16 10:31  晚来天欲雪a  阅读(172)  评论(0编辑  收藏  举报