关于逻辑回归的见解 - 详解
逻辑回归通过将线性回归的输出映射到[ 0 , 1 ] \left[0,1\right][0,1]区间,来表示某个类别的概率。也就是其本质是先通过线性回归的预测值y \boldsymbol{y}y输入到映射函数,既将线性回归的输出通过映射函数映射到[ 0 , 1 ] \left[0,1\right][0,1]sigmoid函数,其图像:就是.常用的映射函数

关于sigmoid函数其形式如下:
f ( x ) = 1 1 + e − x f(x) = \frac{1}{1 + e^{-x}}f(x)=1+e−x1
sigmoid函数的导数特性:
f ′ ( x ) = − 1 ( 1 + e x ) 2 ⋅ − e x = e x ( 1 + e x ) 2 = 1 1 + e x ⋅ e x 1 + e x = 1 1 + e x ⋅ 1 + e x − 1 1 + e x = 1 1 + e x ⋅ ( 1 − 1 1 + e x ) = f ( x ) ( 1 − f ( x ) )
逻辑回归结果可表示为:
P ( y = 1 ∣ x ) = 1 1 + e − ( β 0 + β 1 x 1 + β 2 x 2 + ⋯ + β n x n ) = 1 1 + e − ( β T x ) P(y=1 \mid \mathbf{x}) = \dfrac{1}{1 + e^{-\left(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_n x_n \right)}} = \dfrac{1}{1 + e^{-\left(\beta^T x\right)}}P(y=1∣x)=1+e−(β0+β1x1+β2x2+⋯+βnxn)1=1+e−(βTx)1
其中− ( β 0 + β 1 x 1 + β 2 x 2 + ⋯ + β n x n ) -\left(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_n x_n \right)−(β0+β1x1+β2x2+⋯+βnx
浙公网安备 33010602011771号