BSGS 优美的暴力 求最小的b满足a^b同余n在模质数p意义下 我们先处理出来 sqrt(p) 范围类 a^x同余p的数 然后枚举 j到sqrt(p) 求出 a^(j*sqrt(p))的数,可以O(1) check是否有在属于j*sqrt(p)到(j+1)*sqrt(p) 的b符合答案 完事了
Prufer 序列 重建树的话,先找叶子,逐渐还原,完事了。 重要性质:一个Prufer序列对应一个树,所以有n个点的无向完全图的生成树数量为n^(n-2) 对于一个树上结点度数确定的树,它有n个点,第i个点度数为di,那么它的方案数为 (n-2)!/((d1-1)!*(d2-1)!*(d3-1)!....(dn-1)!)
这个方法常在树形dp中用到,同样对图也适用,设一个连通图的size为si,总点数为n,有k个连通图,只加k-1条边 那么答案是 n^(k-2)*s1*s2*....*sk
泰勒展开 https://wenku.baidu.com/view/3b055b8c6137ee06eff91851.html
ln(1+x)=x-x^2/2+x^3/3-x^4/4+x^5/5...........(x属于(-1,1]) e^x=1+x+x^2/2!+x^3/3!+x^4/4!+x^5/5!..................................
浙公网安备 33010602011771号