• 博客园logo
  • 会员
  • 众包
  • 新闻
  • 博问
  • 闪存
  • 赞助商
  • HarmonyOS
  • Chat2DB
    • 搜索
      所有博客
    • 搜索
      当前博客
  • 写随笔 我的博客 短消息 简洁模式
    用户头像
    我的博客 我的园子 账号设置 会员中心 简洁模式 ... 退出登录
    注册 登录
ying_vincent
博客园    首页    新随笔    联系   管理    订阅  订阅

Machine Learning No.10: Anomaly detection

1. Algorithm

2. evaluating an anomaly detection system

3. anomaly detection vs supervised learning

4. choose what features to use.

  - choose the features xi which hist(xi) is like gaussian shape, or transfer xi such as log(xi+c) to make hist(xi) to be like gaussian shape.

  - if anomaly case's feature is almost like normal case's feature, try to use some new features to distinguish these two cases.

5. multivariate gaussian distribution

the figure below shows the greed point is an anomaly case while it will be justified as normal without using multivariate gaussian distribution

multivariate gaussian distribution

6. anomaly detection using multivariate gaussian distribution

7. original model vs multivariate gaussian distribution

posted @ 2013-06-30 04:58  ying_vincent  阅读(393)  评论(0)    收藏  举报
刷新页面返回顶部
博客园  ©  2004-2025
浙公网安备 33010602011771号 浙ICP备2021040463号-3