「学习笔记」等差数列、等比数列求和
在这里,推荐一下 Konnya_ku 学长,博客内容非常好!
等差数列
像这样的数列 \(a_1, a_2, a_3, a_4, a_5, \ldots, a_n \quad (a_{i + 1} - a_i = k)\),相邻两个数的差(大数减小数)都相等的数列,就是等差数列(你看,真的等差)
等差数列求和公式: \(\frac{n \times (a_1 + a_n)}{2}\)
证明:
设等差数列
\(S = a_1 + a_2 + a_3 + \ldots + a_n, S_1 = a_1 + a_2 + a_3 + \ldots + a_n, S_2 = a_n + a_{n - 1} + \ldots + a_1\)
\[\begin{aligned}
& 2S = S_1 + S_2\\
& 2S = (a_1 + a_n) + (a_2 + a_{n - 1}) + (a_3 + a_{n - 2}) + \ldots + (a_n + a_1)\\
& \because a_{i + 1} - a_i = k\\
& \therefore a_1 + a_n = a_1 + k + a_n - k = a_2 + a_{n - 1} = a_3 + a_{n - 2}\\
& \therefore 2S = n \times (a_1 + a_n)\\
& \therefore S = \frac{n \times (a_1 + a_n)}{2} \quad \square
\end{aligned}
\]
等比数列
像这样的数列 \(a_1, a_2, a_3, a_4, \ldots, a_n \quad (\frac{a_{i + 1}}{a_i} = k)\),相邻两个数的比值都相等的数列,就是等比数列
等比序列求和公式: \(\frac{a_{n + 1} - a_1}{k - 1}\)
证明:
设等比序列
\(S = a_1 + a_2 + a_3 + \ldots + a_n, kS = ka_1 + ka_2 + ka_3 + \ldots + ka_n\)
\[\begin{aligned}
& kS = ka_1 + ka_2 + ka_3 + \ldots + ka_n\\
& kS = a_2 + a_3 + a_4 + \ldots + a_{n + 1}\\
& kS - S = a_{n + 1} + a_n - a_n + \ldots + a_2 - a_2 - a_1\\
& kS - S = a_{n + 1} - a_1\\
& (k - 1)S = a_{n + 1} - a_1\\
& S = \frac{a_{n + 1} - a_1}{k - 1} \quad \square
\end{aligned}
\]
朝气蓬勃 后生可畏

浙公网安备 33010602011771号