bzoj 3512: DZY Loves Math IV
题目描述
今有 ,求
的值,。
Solution
设则
因为 ,所以
贴上我的常数大代码。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<map>
#include<ctime>
#define reg register
const int MAXN=5000010;
const int MOD=1e9+7;
//const int mod=1e6+7;
typedef long long ll;
bool vis[MAXN+10];
int p[MAXN+10];
int phi[MAXN+10];
ll S_phi[MAXN+10];
int len=0;
ll n,m;
int mn[MAXN+10];
//int ck=0,cnt=0;
//std::map<ll,std::map<ll,ll> >mp;
//int hash[mod+10];
std::map<ll,ll>mp_phi;
void init(){
memset(vis,1,sizeof(vis));vis[1]=0;
phi[1]=1;
for(reg int i=2;i<=MAXN;++i){
if(vis[i]){
p[++len]=i;
phi[i]=i-1;mn[i]=i;
}
for(reg int j=1;(j<=len)&&(i*p[j]<=MAXN);++j){
vis[i*p[j]]=0;mn[i*p[j]]=p[j];
if(i%p[j])
phi[i*p[j]]=phi[i]*(p[j]-1);
else{
phi[i*p[j]]=phi[i]*p[j];
break;
}
}
}
S_phi[0]=0;
// for(reg int i=1;i<=15;++i) printf("%d ",mn[i]);
for(reg int i=1;i<=MAXN;++i){
phi[i]%=MOD;
S_phi[i]=(S_phi[i-1]+phi[i])%MOD;
}
}
ll Sphi(ll x){
if(x<MAXN) return S_phi[x];
// if(hash[x%mod]) return hash[x%mod];
if(mp_phi[x]) return mp_phi[x];
x%=MOD;
int s=x*(x+1)/2%MOD,sum=0;
for(reg int l=2,r;l<=x;l=r+1){
r=x/(x/l);
sum=(sum+(r-l+1)*Sphi(x/l)%MOD)%MOD;
}
// return hash[x%mod]=((s-sum+MOD)%MOD);
return mp_phi[x]=((s-sum+MOD)%MOD);
}
ll S(ll x,ll y){
if(!x||!y) return 0;
if(x==1) return Sphi(y);
if(y==1) return (Sphi(x)-Sphi(x-1)+MOD)%MOD;
// if(mp[x][y]) return mp[x][y];
// ++cnt;
// printf("%lld %lld\n",x,y);
int xx=x,P,Q=1,l=0,pr[10];
// int st=clock();
while(x>1){
int mx=mn[x];
Q*=mx;
while(x%mx==0) x/=mx;
pr[++l]=mx;
}
P=(int)(xx/Q);
ll sum=0,d;
for(reg int i=0;i<(1<<l);++i){
d=1;
for(reg int j=1;j<=l;++j)
if(i&(1<<(j-1))) d*=pr[j];
// if(Q%d==0){
sum=(sum+phi[Q/d]*S(d,y/d)%MOD)%MOD;
// sum=(sum+phi[d]*S(Q/d,y/(Q/d))%MOD)%MOD;
// }
}
return P*sum%MOD;
}
int main(){
init();
scanf("%lld%lld",&n,&m);
ll ans=0;
for(reg int i=1;i<=n;++i)
ans=(ans+S(i,m))%MOD;
printf("%lld",ans);
// printf("\n%d %d",ck,cnt);
}
AC
#include<iostream>
#include<cstdio>
#include<vector>
#include<map>
#include<ctime>
using namespace std;
#define MOD 1000000007
#define MAX 2000000
int n,m,ans;
int pri[MAX],tot,phi[MAX],mn[MAX];
bool zs[MAX];
int ck=0,cnt=0;
void pre(int n)
{
phi[1]=1;
for(int i=2;i<=n;++i)
{
if(!zs[i])pri[++tot]=i,phi[i]=i-1,mn[i]=i;
for(int j=1;i*pri[j]<=n&&j<=tot;++j)
{
zs[i*pri[j]]=true;mn[i*pri[j]]=pri[j];
if(i%pri[j])phi[i*pri[j]]=phi[i]*phi[pri[j]];
else{phi[i*pri[j]]=phi[i]*pri[j];break;}
}
}
for(int i=1;i<=15;++i) printf("%d ",mn[i]);
for(int i=1;i<=n;++i)phi[i]=(phi[i-1]+phi[i])%MOD;
}
map<int,int> M,S[100010];
int Phi(int n)
{
if(n<MAX)return phi[n];
if(M[n])return M[n];
int ret=1ll*n*(n+1)/2%MOD;
for(int i=2,j;i<=n;i=j+1)
{
j=n/(n/i);
ret=(ret+MOD-1ll*(j-i+1)*Phi(n/i)%MOD)%MOD;
}
return M[n]=ret;
}
int Solve(int n,int m)
{
if(!m)return 0;
if(n==1)return Phi(m);
if(m==1)return (Phi(n)-Phi(n-1)+MOD)%MOD;
if(S[n][m])return S[n][m];
++cnt;
int ret=0;
vector<int> fac;int p=1,q=1,N=n;
int st=clock();
while(N>1)
{
int x=mn[N];q*=x;N/=x;fac.push_back(x);
while(N%x==0)p*=x,N/=x;
}
ck+=clock()-st;
for(int i=0,l=fac.size();i<1<<l;++i)
{
int d=1;
for(int j=0;j<l;++j)if(i&(1<<j))d*=fac[j];
ret=(ret+1ll*(Phi(q/d)-Phi(q/d-1)+MOD)*Solve(d,m/d))%MOD;
}
return S[n][m]=1ll*ret*p%MOD;
}
int main()
{
scanf("%d%d",&n,&m);pre(MAX);
for(int i=1;i<=n;++i)ans=(ans+Solve(i,m))%MOD;
printf("%d\n",ans);
printf("\n%d %d",ck,cnt);
return 0;
}

浙公网安备 33010602011771号