基于mykernel 2.0编写一个操作系统内核

一、实验要求

1.按照https://github.com/mengning/mykernel 的说明配置mykernel 2.0,熟悉Linux内核的编译;

2.基于mykernel 2.0编写一个操作系统内核,参照https://github.com/mengning/mykernel 提供的范例代码

3.要分析操作系统内核核心功能及运行工作机制

二、实验环境

VMware Workstation Pro 15

ubuntu18.04.4

三、实验内容

1.按照https://github.com/mengning/mykernel 的说明配置mykernel 2.0

参照如下代码

wget https://raw.github.com/mengning/mykernel/master/mykernel-2.0_for_linux-5.4.34.patch
sudo apt install axel
axel -n 20 https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.34.tar.xz
xz -d linux-5.4.34.tar.xz
tar -xvf linux-5.4.34.tar
cd linux-5.4.34
patch -p1 < ../mykernel-2.0_for_linux-5.4.34.patch
sudo apt install build-essential libncurses-dev bison flex libssl-dev libelf-dev
make defconfig 
make -j$(nproc) 
sudo apt install qemu
qemu-system-x86_64 -kernel arch/x86/boot/bzImage

 


配置完成后,可以看到,时钟中断处理程序my_timer_handler在周期性执行。

 

通过分析源码:

mymain.c

void __init my_start_kernel(void)
{
    int i = 0;
    while(1)
    {
        i++;
        if(i%100000 == 0)
            printk(KERN_NOTICE "my_start_kernel here  %d \n",i);
    }
}

  

my interrupt.c

void my_timer_handler(void)
{
    printk(KERN_NOTICE "\n>>>>>>>>>>>>>>>>>my_timer_handler here<<<<<<<<<<<<<<<<<<\n\n");
}

 

mymain.c不断循环执行,当 i 能够被 100000 整除 就输出 “my_start_kernel here”

myinterrupt.c是中断处理程序,内核执行时有一个中断处理程序的上下文环境,在固定的时间间隔都发生一次中断,也是说每秒发生该中断的频率都是固定的。该频率是常量HZ,该值一般是在100 ~ 1000之间,关中断时调用触发myinterrupt.c,输出“>>>>>>>>>>>>>>my_timer_handler here<<<<<<<<<<<<<<<”

 

2.基于mykernel 2.0编写一个操作系统内核

1)添加进程控制块文件mypcb.h

#define MAX_TASK_NUM        4

#define KERNEL_STACK_SIZE   1024*2

/* CPU-specific state of this task */

struct Thread {

    unsigned long        ip;

    unsigned long        sp;

};

 

typedef struct PCB{

    int pid;

    volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */

    unsigned long stack[KERNEL_STACK_SIZE];

    /* CPU-specific state of this task */

    struct Thread thread;

    unsigned long    task_entry;

    struct PCB *next;

}tPCB;

void my_schedule(void);

 

IP:指令指针
SP:堆栈指针

PID:进程控制符

state:定义了进程的三种状态。-1就绪,0运行,>0阻塞

stack[]:进程使用的堆栈

thread:进程当前正在执行的线程

task_entry:进程入口函数

next:指向下一个进程PCB的指针



2)修改mymain.c中的代码
修改后代码如下:

#include <linux/types.h>

#include <linux/string.h>

#include <linux/ctype.h>

#include <linux/tty.h>

#include <linux/vmalloc.h>

 

 

#include "mypcb.h"

 

tPCB task[MAX_TASK_NUM];

tPCB * my_current_task = NULL;

volatile int my_need_sched = 0;

 

void my_process(void);

 

 

void __init my_start_kernel(void)

{

    int pid = 0;

    int i;

    /* Initialize process 0*/

    task[pid].pid = pid;

    task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */

    task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;

    task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];

    task[pid].next = &task[pid];

    /*fork more process */

    for(i=1;i<MAX_TASK_NUM;i++)

    {

        memcpy(&task[i],&task[0],sizeof(tPCB));

        task[i].pid = i;

        task[i].thread.sp = (unsigned long)(&task[i].stack[KERNEL_STACK_SIZE-1]);

        task[i].next = task[i-1].next;

        task[i-1].next = &task[i];

    }

    /* start process 0 by task[0] */

    pid = 0;

    my_current_task = &task[pid];

    asm volatile(

        "movq %1,%%rsp\n\t"     /* set task[pid].thread.sp to rsp */

        "pushq %1\n\t"             /* push rbp */

        "pushq %0\n\t"             /* push task[pid].thread.ip */

        "ret\n\t"                 /* pop task[pid].thread.ip to rip */

        :

        : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)    /* input c or d mean %ecx/%edx*/

    );

}

 

int i = 0;

 

void my_process(void)

{    

    while(1)

    {

        i++;

        if(i%10000000 == 0)

        {

            printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid);

            if(my_need_sched == 1)

            {

                my_need_sched = 0;

                my_schedule();

            }

            printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid);

        }     

    }

}

 

首先调用my_start_kernel函数,创建0号进程后,创建其他多个进程,并通过next指针进行连接。接下来通过汇编语言分配系统资源:

movq %1,%%rsp: 将待执行的进程的栈顶指针赋值给RSP寄存器

pushq %1:将当前进程的栈顶指针压入堆栈,用于恢复。

pushq %0:将当前进程的指令指针压入堆栈

ret:将压栈的进程指令指针保存到RIP寄存器中

然后在my_process函数中,模拟了时间片轮转调度,每当i增加10000000时,根据my_need_sched变量,如果为1,当前进程进行调度。即运行完一个时间片后,让出CPU。

 3)修改myinterrupt.c中的代码

修为改:

#include <linux/types.h>

#include <linux/string.h>

#include <linux/ctype.h>

#include <linux/tty.h>

#include <linux/vmalloc.h>

 

#include "mypcb.h"

 

extern tPCB task[MAX_TASK_NUM];

extern tPCB * my_current_task;

extern volatile int my_need_sched;

volatile int time_count = 0;

 

/*

 * Called by timer interrupt.

 * it runs in the name of current running process,

 * so it use kernel stack of current running process

 */

void my_timer_handler(void)

{

    if(time_count%1000 == 0 && my_need_sched != 1)

    {

        printk(KERN_NOTICE ">>>my_timer_handler here<<<\n");

        my_need_sched = 1;

    }

    time_count ++ ;  

    return;      

}

 

void my_schedule(void)

{

    tPCB * next;

    tPCB * prev;

 

    if(my_current_task == NULL

        || my_current_task->next == NULL)

    {

        return;

    }

    printk(KERN_NOTICE ">>>my_schedule<<<\n");

    /* schedule */

    next = my_current_task->next;

    prev = my_current_task;

    if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */

    {        

        my_current_task = next;

        printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);  

        /* switch to next process */

        asm volatile(    

            "pushq %%rbp\n\t"         /* save rbp of prev */

            "movq %%rsp,%0\n\t"     /* save rsp of prev */

            "movq %2,%%rsp\n\t"     /* restore  rsp of next */

            "movq $1f,%1\n\t"       /* save rip of prev */    

            "pushq %3\n\t"

            "ret\n\t"                 /* restore  rip of next */

            "1:\t"                  /* next process start here */

            "popq %%rbp\n\t"

            : "=m" (prev->thread.sp),"=m" (prev->thread.ip)

            : "m" (next->thread.sp),"m" (next->thread.ip)

        );

    }  

    return;    

}

 

 其中my_timer_handler函数的功能为周期性将my_need_sched置为1,标志进程需要进程调度。实际的调度代码为my_schedule函数。

对核心代码的理解:

pushq %%rbp:将当前进程的栈底指针压入堆栈

movq %%rsp,%0: 将RSP寄存器的值保存到前一个进程的栈顶指针中

movq %2,%%rsp: 将RSP寄存器的值更新为下一进程的栈顶地址

movq $1f,%1: 将RIP寄存器中的值保存到前一个进程的指令指针中

pushq %3:  将下一个进程的指令指针压入堆栈

ret: 将之前压栈的进程指令指针保存到RIP寄存器中

1:开始执行下一个进程

popq %%rbp: 将之前进程保存的栈底地址出栈,赋值给RBP寄存器

 


4)重新编译后,启动QEMU观察结果

 

  

posted @ 2020-05-13 17:04  别骂了  阅读(189)  评论(0)    收藏  举报