Python导出PostgreSQL数据库的表结构(使用SSH隧道)
1、安装依赖
pip install sshtunnel psycopg2 openpyxl pandas
2、实现代码:
import pandas as pd import psycopg2 from openpyxl import load_workbook from openpyxl.styles import Border, Side, PatternFill, Font, Alignment from openpyxl.utils import get_column_letter from sshtunnel import SSHTunnelForwarder def apply_formatting(excel_path): """应用格式设置""" wb = load_workbook(excel_path) # 定义样式 blue_fill = PatternFill( start_color="0070C0", end_color="0070C0", fill_type="solid" ) thin_border = Border( left=Side(style='thin'), right=Side(style='thin'), top=Side(style='thin'), bottom=Side(style='thin') ) for sheet in wb.worksheets: # 设置标题行样式 for cell in sheet[1]: cell.fill = blue_fill cell.font = Font(color="FFFFFF", bold=True) # 设置边框 for row in sheet.iter_rows(min_row=1): for cell in row: cell.border = thin_border # 自适应列宽 for column in sheet.columns: max_length = max( len(str(cell.value)) for cell in column ) adjusted_width = (max_length + 2) * 1.2 sheet.column_dimensions[ get_column_letter(column[0].column) ].width = adjusted_width # 定义居中对齐样式(水平居中 + 垂直居中) alignment = Alignment( horizontal='center', # 水平居中:'left', 'center', 'right', 'justify' vertical='center' # 垂直居中:'top', 'center', 'bottom' ) # 对指定的列设置居中 columns_to_center = ['A', 'H'] # 将A列和H列设置居中 for col in columns_to_center: for cell in sheet[col]: cell.alignment = alignment wb.save(excel_path) def add_hyperlinks(excel_path): """添加双向超链接""" wb = load_workbook(excel_path) ws_summary = wb["首页总览"] # 总览表到分表 for row in ws_summary.iter_rows(min_row=2): table_name = row[1].value sheet_name = table_name[:30] hyperlink = f"#'{sheet_name}'!A1" row[1].hyperlink = hyperlink row[1].style = "Hyperlink" # 分表到总览表 for sheet_name in wb.sheetnames[1:]: ws = wb[sheet_name] last_row = ws.max_row + 1 ws.cell(row=last_row, column=1, value="返回\"首页总览\"") ws.cell(row=last_row, column=1).hyperlink = "#'首页总览'!A1" ws.cell(row=last_row, column=1).style = "Hyperlink" wb.save(excel_path) def sql_to_dataframe(cursor): """将 pyodbc cursor 结果转换为 DataFrame""" # 获取列名 columns = [column[0] for column in cursor.description] # 获取数据并创建DataFrame data = cursor.fetchall() return pd.DataFrame.from_records(data, columns=columns) def get_tables_info(cursor, db_user): """获取所有表信息""" query = f""" SELECT c.relname AS table_name, obj_description(c.oid, 'pg_class') AS table_comment FROM pg_class c JOIN pg_namespace n ON n.oid = c.relnamespace WHERE c.relkind = 'r' AND n.nspname = 'public' AND NOT EXISTS ( SELECT 1 FROM pg_inherits i WHERE i.inhrelid = c.oid ) ORDER BY table_name """ # 执行查询 cursor.execute(query) return sql_to_dataframe(cursor) def get_columns_info(cursor, table_name): """获取指定表结构详情""" query = f""" SELECT c.relname AS table_name, a.attname AS column_name, col_description(a.attrelid, a.attnum) AS column_comment, CASE WHEN t.typcategory = 'A' THEN REPLACE(t.typname, '_', '') || '[]' ELSE t.typname END AS column_type, CASE WHEN t.typname IN ('varchar','bpchar') THEN a.atttypmod -4 WHEN t.typname = 'numeric' THEN (a.atttypmod -4) >> 16 & 65535 ELSE NULL END AS type_length, CASE WHEN t.typname = 'numeric' THEN (a.atttypmod -4) & 65535 ELSE NULL END AS type_scale, CASE WHEN a.attnotnull THEN '[√]' ELSE '[]' END AS isnotnull FROM pg_class c JOIN pg_attribute a ON a.attrelid = c.oid JOIN pg_type t ON a.atttypid = t.oid WHERE c.relkind = 'r' AND a.attnum > 0 AND NOT a.attisdropped AND c.relname = '{table_name}' AND c.relnamespace = 'public'::regnamespace ORDER BY c.relname, a.attnum """ # 执行查询 cursor.execute(query) return sql_to_dataframe(cursor) if __name__ == '__main__': # ================== 配置信息 ================== # SSH 隧道配置 ssh_host = "100.100.10.10" # SSH跳板机IP ssh_port = 22 # SSH端口(默认22) ssh_user = "root" # SSH用户名 ssh_password = "Root@1234" # SSH密码 # 数据库参数 db_host = "100.100.20.20" # 数据库服务器实际IP(SSH隧道目标) db_port = 5432 # 数据库默认端口 db_name = "mydb" # 数据库 db_user = "postgres" # 数据库用户 db_password = "postgres" # 数据库用户的密码 # 本地绑定端口(随机可用端口) local_bind_port = 9090 # ================== 建立SSH隧道 ================== try: with SSHTunnelForwarder( (ssh_host, ssh_port), ssh_username=ssh_user, ssh_password=ssh_password, remote_bind_address=(db_host, db_port), local_bind_address=("0.0.0.0", local_bind_port), set_keepalive=15 # 保持连接活跃 ) as tunnel: print(f"SSH隧道建立成功,本地端口:{tunnel.local_bind_port}") # ================== 连接数据库 ================== conn = psycopg2.connect( host='localhost', # 关键!必须使用localhost port=tunnel.local_bind_port, # 映射的本地端口 database=db_name, user=db_user, password=db_password ) cursor = conn.cursor() print("数据库连接成功!") # 获取所有表的信息 df_summary = get_tables_info(cursor, db_user.upper()) df_summary.insert(0, '序号', range(1, len(df_summary) + 1)) # 写入的Excel名称 output_file = f"数据库{db_name}表结构.xlsx" # 创建Excel写入对象 with pd.ExcelWriter(output_file, engine='openpyxl') as writer: # 写入总览页 df_summary.to_excel( writer, sheet_name='首页总览', index=False, header=['序号', '表名', '表注释'] ) # 遍历写入各表结构 for _, row in df_summary.iterrows(): table_name = row['table_name'] print("正在导出表", table_name, "的表结构") df_columns = get_columns_info(cursor, table_name) df_columns.insert(0, '序号', range(1, len(df_columns) + 1)) df_columns.to_excel( writer, sheet_name=table_name[:30], # Excel表名最长31字符 index=False, header=["序号", "表名", "字段名称", "字段注释", "字段类型", "长度", "小数点", "非空"] ) # 应用格式和超链接 print("正在设置超链接和边框......") add_hyperlinks(output_file) # 设置超链接 apply_formatting(output_file) # 设置边框 print(f"表结构已成功导出至 {output_file}") except Exception as e: print(f"连接失败: {str(e)}") finally: if 'conn' in locals(): conn.close()
本文来自博客园,作者:业余砖家,转载请注明原文链接:https://www.cnblogs.com/yeyuzhuanjia/p/18888468

浙公网安备 33010602011771号