摘要: 设$f'(x)$在$[a,b]$上连续,且$f(a)=f(b)=0$,则 \begin{align*} \max_{a\leq x\leq b}|f'(x)|\geq \frac{4}{(b-a)^2}\int_a^b|f(x)|dx \end{align*}证明:只要做掉$f(x)$在$[... 阅读全文
posted @ 2012-12-28 01:02 叶卢庆 阅读(372) 评论(0) 推荐(0)
摘要: 设$f'(x)$在$[a,b]$上连续,且$f(a)=f(b)=0$,则 \begin{align*} \max_{a\leq x\leq b}|f'(x)|\geq \frac{4}{(b-a)^2}\int_a^b|f(x)|dx \end{align*}证明:只要做掉$f(x)$在$[... 阅读全文
posted @ 2012-12-28 01:02 叶卢庆 阅读(1123) 评论(0) 推荐(0)