摘要:
设$f'(x)$在$[a,b]$上连续,且$f(a)=f(b)=0$,则 \begin{align*} \max_{a\leq x\leq b}|f'(x)|\geq \frac{4}{(b-a)^2}\int_a^b|f(x)|dx \end{align*}证明:只要做掉$f(x)$在$[... 阅读全文
posted @ 2012-12-28 01:02
叶卢庆
阅读(372)
评论(0)
推荐(0)
摘要:
设$f'(x)$在$[a,b]$上连续,且$f(a)=f(b)=0$,则 \begin{align*} \max_{a\leq x\leq b}|f'(x)|\geq \frac{4}{(b-a)^2}\int_a^b|f(x)|dx \end{align*}证明:只要做掉$f(x)$在$[... 阅读全文
posted @ 2012-12-28 01:02
叶卢庆
阅读(1123)
评论(0)
推荐(0)

浙公网安备 33010602011771号